Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 9: 1473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405433

RESUMO

Cardiovascular complications are the major cause of mortality and morbidity in diabetic patients. The changes in myocardial structure and function associated with diabetes are collectively called diabetic cardiomyopathy. Numerous molecular mechanisms have been proposed that could contribute to the development of diabetic cardiomyopathy and have been studied in various animal models of type 1 or type 2 diabetes. The current review focuses on the role of sodium (Na+) in diabetic cardiomyopathy and provides unique data on the linkage between Na+ flux and energy metabolism, studied with non-invasive 23Na, and 31P-NMR spectroscopy, polarography, and mass spectroscopy. 23Na NMR studies allow determination of the intracellular and extracellular Na+ pools by splitting the total Na+ peak into two resonances after the addition of a shift reagent to the perfusate. Using this technology, we found that intracellular Na+ is approximately two times higher in diabetic cardiomyocytes than in control possibly due to combined changes in the activity of Na+-K+ pump, Na+/H+ exchanger 1 (NHE1) and Na+-glucose cotransporter. We hypothesized that the increase in Na+ activates the mitochondrial membrane Na+/Ca2+ exchanger, which leads to a loss of intramitochondrial Ca2+, with a subsequent alteration in mitochondrial bioenergetics and function. Using isolated mitochondria, we showed that the addition of Na+ (1-10 mM) led to a dose-dependent decrease in oxidative phosphorylation and that this effect was reversed by providing extramitochondrial Ca2+ or by inhibiting the mitochondrial Na+/Ca2+ exchanger with diltiazem. Similar experiments with 31P-NMR in isolated superfused mitochondria embedded in agarose beads showed that Na+ (3-30 mM) led to significantly decreased ATP levels and that this effect was stronger in diabetic rats. These data suggest that in diabetic cardiomyocytes, increased Na+ leads to abnormalities in oxidative phosphorylation and a subsequent decrease in ATP levels. In support of these data, using 31P-NMR, we showed that the baseline ß-ATP and phosphocreatine (PCr) were lower in diabetic cardiomyocytes than in control, suggesting that diabetic cardiomyocytes have depressed bioenergetic function. Thus, both altered intracellular Na+ levels and bioenergetics and their interactions may significantly contribute to the pathology of diabetic cardiomyopathy.

2.
Cell Biochem Funct ; 33(2): 67-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25663655

RESUMO

Adenylate kinase plays an important role in cellular energy homeostasis by catalysing the interconversion of adenine nucleotides. The goal of present study was to evaluate the contribution of the adenylate kinase reaction to oxidative ATP synthesis by direct measurements of ATP using (31) P NMR spectroscopy. Results show that AMP can stimulate ATP synthesis in the presence or absence of ADP. In particular, addition of 1 mM AMP to the 0.6 mM ADP superfusion system of isolated superfused mitochondria (contained and maintained in agarose beads) led to a 25% increase in ATP synthesis as measured by the increase in ßATP signal. More importantly, we show that AMP can support ATP synthesis in the absence of ADP, demonstrated as follows. Superfusion of mitochondria without ADP led to the disappearance of ATP γ, α and ß signals and the increase of Pi . Addition of AMP to the medium restored the production of ATP, as demonstrated by the reappearance of γ, α and ß ATP signals, in conjunction with a decrease in Pi , which is being used for ATP synthesis. Polarographic studies showed Mg(2+) dependence of this process, confirming the specificity of the adenylate kinase reaction. Furthermore, data obtained from this study demonstrate, for the first time, that different aspects of the adenylate kinase reaction can be evaluated with (31) P NMR spectroscopy. SIGNIFICANCE OF RESEARCH PARAGRAPH: The data generated in the present study indicate that (31) P NMR spectroscopy can effectively be used to study the adenylate kinase reaction under a variety of conditions. This is important because understanding of adenylate kinase function and/or malfunction is essential to understanding its role in health and disease. The data obtained with (31) P NMR were confirmed by polarographic studies, which further strengthens the robustness of the NMR findings. In summary, (31) P NMR spectroscopy provides a sensitive tool to study adenylate kinase activity in different physiological and pathophysiological conditions, including but not exclusive of, cancer, ischemic injury, hemolytic anemia and neurological problems such as sensorineural deafness.


Assuntos
Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Adenilato Quinase/metabolismo , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Consumo de Oxigênio , Animais , Espectroscopia de Ressonância Magnética/métodos , Polarografia/métodos , Ratos
3.
Biochim Biophys Acta ; 1642(1-2): 53-8, 2003 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-12972293

RESUMO

To test the hypothesis that decreased hepatocyte ATP is transduced into a hepatic neuronal signal via a change in sodium pump activity, we examined the effect of 2,5-anhydro-D-mannitol (2,5-AM), which stimulates feeding behavior in rats, on intracellular sodium levels using 23Na nuclear magnetic resonance (NMR) spectroscopy. Isolated hepatocytes suspended in agarose beads were superfused with either 2.5 mM 2,5-AM or fructose in the presence of the paramagnetic shift reagent, thulium(III)(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(methylenephosphonate)). Superfusion with 2,5-AM decreased hepatocyte ATP and increased intracellular sodium levels compared with superfusion with either fructose or shift reagent alone starting within 15 min of exposure, reaching a maximum level of 120% of baseline by 30 min and declining gradually thereafter over the next 90 min. Superfusion with fructose, which also decreased hepatocyte ATP but by less than half the amount seen with 2,5-AM, had no significant effect on cellular sodium levels. The results support the hypothesis that changes in sodium pump activity could participate in transducing a hunger stimulus associated with hepatocyte energy status into a signal for hunger.


Assuntos
Hepatócitos/enzimologia , Fome/fisiologia , Fígado/fisiologia , Manitol/análogos & derivados , Manitol/farmacologia , Sódio/metabolismo , Trifosfato de Adenosina/deficiência , Animais , Regulação do Apetite/efeitos dos fármacos , Regulação do Apetite/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Frutose/metabolismo , Frutose/farmacologia , Hepatócitos/efeitos dos fármacos , Fome/efeitos dos fármacos , Fígado/citologia , Espectroscopia de Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
4.
J Surg Res ; 103(2): 243-51, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11922741

RESUMO

BACKGROUND: Ca(2+) overload leads to mitochondrial uncoupling, decreased ATP synthesis, and myocardial dysfunction. Pharmacologically opening of mitochondrial K(ATP) channels decreases mitochondrial Ca(2+) uptake, improving mitochondrial function during Ca(2+) overload. Ischemic preconditioning (IPC), by activating mitochondrial K(ATP) channels, may attenuate mitochondrial Ca(2+) overload and improve mitochondrial function during reperfusion. The purpose of these experiments was to study the effect of IPC (1) on mitochondrial function and (2) on mitochondrial tolerance to experimental Ca(2+) overload. METHODS: Rat hearts (n = 6/group) were subjected to (a) 30 min of equilibration, 25 min of ischemia, and 30 min of reperfusion (Control) or (b) two 5-min episodes of ischemic preconditioning, 25 min of ischemia, and 30 min of reperfusion (IPC). Developed pressure (DP) was measured. Heart mitochondria were isolated at end-Equilibration (end-EQ) and at end-Reperfusion (end-RP). Mitochondrial respiratory function (state 2, oxygen consumption with substrate only; state 3, oxygen consumption stimulated by ADP; state 4, oxygen consumption after cessation of ADP phosphorylation; respiratory control index (RCI, state 3/state 4); rate of oxidative phosphorylation (ADP/Deltat), and ADP:O ratio) was measured with polarography using alpha-ketoglutarate as a substrate in the presence of different Ca(2+) concentrations (0 to 5 x 10(-7) M) to simulate Ca(2+) overload. RESULTS: IPC improved DP at end-RP. IPC did not improve preischemic mitochondrial respiratory function or preischemic mitochondrial response to Ca(2+) loading. IPC improved state 3, ADP/Deltat, and RCI during RP. Low Ca(2+) levels (0.5 and 1 x 10(-7) M) stimulated mitochondrial function in both groups predominantly in IPC. The Control group showed evidence of mitochondrial uncoupling at lower Ca(2+) concentrations (1 x 10(-7) M). IPC preserved state 3 at high Ca(2+) concentrations. CONCLUSIONS: The cardioprotective effect of IPC results, in part, from preserving mitochondrial function during reperfusion and increasing mitochondrial tolerance to Ca(2+) loading at end-RP. Activation of mitochondrial K(ATP) channels by IPC and their improvement in Ca(2+) homeostasis during RP may be the mechanism underlying this protection.


Assuntos
Cálcio/administração & dosagem , Precondicionamento Isquêmico , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/fisiologia , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Animais , Ácidos Cetoglutáricos/metabolismo , Masculino , Isquemia Miocárdica/metabolismo , Reperfusão Miocárdica , Consumo de Oxigênio , Fosforilação , Ratos , Ratos Sprague-Dawley
5.
J Surg Res ; 102(2): 221-8, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11796022

RESUMO

BACKGROUND: Coenzyme Q10 (CoQ10) protects myocardium from ischemia-reperfusion (IR) injury as evidenced by improved recovery of mechanical function, ATP, and phosphocreatine during reperfusion. This protection may result from CoQ10's bioenergetic effects on the mitochondria, from its antioxidant properties, or both. The purpose of this study was to elucidate the effects of CoQ10 supplementation on mitochondrial function during myocardial ischemia-reperfusion using an isolated mitochondrial preparation. METHODS: Isolated hearts (n = 6/group) from rats pretreated with liposomal CoQ10 (10 mg/kg iv, CoQ10), vehicle (liposomal only, Vehicle), or saline (Saline) 30 min before the experiments were subjected to 15 min of equilibration (EQ), 25 min of ischemia (I), and 40 min of reperfusion (RP). Left ventricular-developed pressure (DP) was measured. Mitochondria were isolated at end-equilibration (end-EQ), at end-ischemia (end-I), and at end-reperfusion (end-RP). Mitochondrial respiratory function (State 2, 3, and 4, respiratory control index (RCI, ratio of State 3 to 4), and ADP:O ratio) was measured by polarography using NADH (alpha-ketoglutarate, alpha-KG)- or FADH (succinate, SA)-dependent substrates. RESULTS: CoQ10 improved recovery of DP at end-RP (67 +/- 11% in CoQ10 vs 47 +/- 5% in Vehicle and 50 +/- 11% in Saline, P < 0.05 vs Vehicle and Saline). CoQ10 did not change preischemic mitochondrial function. IR decreased State 3 and RCI in all groups using either substrate. CoQ10 had no effect in the mitochondrial oxidation of alpha-KG at end-I. CoQ10 improved State 3 at end-I when SA was used (167 +/- 21 in CoQ10 vs 120 +/- 10 in Saline and 111 +/- 10 ng-atoms O/min/mg protein in Vehicle, P < 0.05). Using alpha-KG as a substrate, CoQ10 improved RCI at end-RP (4.2 +/- 0.2 in CoQ10 vs 3.2 +/- 0.2 in Saline and 3.0 +/- 0.3 in Vehicle, P < 0.05). Using SA, CoQ10 improved State 3 (181 +/- 10 in CoQ10 vs 142 +/- 9 in Saline and 140 +/- 12 ng-atoms O/min/mg protein in Vehicle, P < 0.05) and RCI (2.21 +/- 0.06 in CoQ10 vs 1.85 +/- 0.11 in Saline and 1.72 +/- 0.08 in Vehicle, P < 0.05) at end-RP. CONCLUSIONS: The cardioprotective effects of CoQ10 can be attributed to the preservation of mitochondrial function during reperfusion as evidenced by improved FADH-dependent oxidation.


Assuntos
Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Animais , Cardiotônicos/farmacologia , Respiração Celular , Coenzimas , Técnicas In Vitro , Masculino , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
6.
Am J Physiol Regul Integr Comp Physiol ; 282(3): R710-4, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11832390

RESUMO

Administration of the fructose analog 2,5-anhydro-D-mannitol (2,5-AM) stimulates eating in rats fed a low-fat diet but not in those fed a high-fat diet that enhances fatty acid oxidation. The eating response to 2,5-AM treatment is apparently triggered by a decrease in liver ATP content. To assess whether feeding a high-fat diet prevents the eating response to 2,5-AM by attenuating the decrease in liver ATP, we examined the effects of the analog on food intake, liver ATP content, and hepatic phosphate metabolism [using in vivo 31P-NMR spectroscopy (NMRS)]. Injection (intraperitoneal) of 300 mg/kg 2,5-AM increased food intake in rats fed a high-carbohydrate/low-fat diet, but not in those fed high-fat/low-carbohydrate (HF/LC) food. Liver ATP content decreased in all rats given 2,5-AM compared with saline, but it decreased about half as much in rats fed the HF/LC diet. NMRS on livers of anesthetized rats indicated that feeding the HF/LC diet attenuates the effects of 2,5-AM on liver ATP by reducing phosphate trapping. These results suggest that rats consuming a high-fat diet do not increase food intake after injection of 2,5-AM, because the analog is not sufficiently phosphorylated and therefore fails to decrease liver energy status below a level that generates a signal to eat.


Assuntos
Gorduras na Dieta/administração & dosagem , Ingestão de Alimentos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Manitol/análogos & derivados , Manitol/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Gorduras na Dieta/farmacologia , Espectroscopia de Ressonância Magnética , Masculino , Fósforo , Ratos , Ratos Sprague-Dawley
7.
Am J Physiol Regul Integr Comp Physiol ; 282(3): R715-20, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11832391

RESUMO

The fructose analog 2,5-anhydro-D-mannitol (2,5-AM) stimulates feeding in rats by reducing ATP content in the liver. These behavioral and metabolic effects occur with rats fed a high-carbohydrate/low-fat (HC/LF) diet, but they are prevented or attenuated when the animals eat high-fat/low-carbohydrate (HF/LC) food. To examine the metabolic bases for this effect of diet, we assessed the actions of 2,5-AM on ATP content, oxygen consumption, and substrate oxidation in isolated hepatocytes from rats fed one of the two diets. Compared with cells from rats fed the HC/LF diet ("HC/LF" cells), cells from rats fed the HF/LC diet ("HF/LC" cells) had similar ATP contents but lower oxygen consumption, decreased fructose, and increased palmitate oxidation. 2,5-AM did not decrease ATP content or oxygen consumption in HF/LC cells as much as it did in HC/LF hepatocytes, and it only affected fructose and palmitate oxidation in HC/LF cells. 31P-NMR spectroscopy indicated that differences in phosphate trapping accounted for differences in depletion of ATP by 2,5-AM. These results suggest that intake of the HF/LC diet prevents the eating response and attenuates the decline in liver ATP by shifting hepatocyte metabolism to favor fat over carbohydrate as an energy-yielding substrate.


Assuntos
Gorduras na Dieta/farmacologia , Metabolismo Energético/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Manitol/análogos & derivados , Manitol/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Separação Celular , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/farmacologia , Frutose/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Palmitatos/metabolismo , Fósforo , Ratos , Ratos Sprague-Dawley
8.
Surgery ; 131(2): 172-8, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11854695

RESUMO

Background. Ischemic preconditioning (IPC) protects the myocardium from ischemia reperfusion injury. The effect of IPC on the mitochondria is not well known. However, one of the mechanisms postulated in IPC (the opening of the mitochondrial K(ATP) channels) is likely to result in changes in mitochondrial function. Therefore, the purpose of this study was to determine the effect of IPC on mitochondrial function during ischemia reperfusion. Methods. Isolated rat hearts (n = 6/group) were subjected to (1) 30 minutes of equilibration, 25 minutes of ischemia, and 30 minutes of reperfusion (RP) (control group) or (2) 10 minutes of equilibration, two-5 minute episodes of IPC (each followed by 5 minutes of re-equilibration), 25 minutes of ischemia, and 30 minutes of RP (IPC group). Left ventricular rate pressure product (RPP) was measured. At end-equilibration (end-EQ) and at end-reperfusion (end-RP) mitochondria were isolated. Mitochondrial respiratory function (state 2, 3, and 4), respiratory control index (RCI), rate of oxidative phosphorylation (ADP/Delta t), and ADP:O ratio were measured by polarography with the use of NADH- or FADH-dependent substrates. Results. IPC improved recovery of RPP at end-RP (72% +/- 5% in IPC vs 30% +/- 4% in control, P <.05). Ischemia reperfusion (IR) decreased state 3, ADP/Delta t, and RCI in both groups compared with end-EQ. IPC improved state 3 (47 +/- 3 in IPC vs 37 +/- 2 ng-atoms O/min/mg protein in control), ADP/Delta t (17 +/- 1 in IPC vs 13 +/- 1 nmol/s/mg protein in control), and RCI (3.7 +/- 0.1 in IPC vs 2.1 +/- 0.2 in control) at end-RP compared with control with the use of NADH-dependent substrate (P <.05 vs control). IPC also improved state 3 (85 +/- 6 in IPC vs 71 +/- 4 ng-atoms O/min/mg protein in control), ADP/Delta t (18 +/- 2 in IPC vs 12 +/- 1 nmol/s/mg protein in control), RCI (2 +/- 0.1 in IPC vs 1.5 +/- 0.1 in control), and ADP:O ratios (1.4 +/- 0.04 in IPC vs 1.7 +/- 0.09 in control) at end-RP compared with control with the use of FADH-dependent substrate (P <.05 vs control). Conclusions. The cardioprotective effects of IPC can be attributed at least in part to the preservation of mitochondrial function during reperfusion.


Assuntos
Precondicionamento Isquêmico Miocárdico , Mitocôndrias Cardíacas/fisiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Masculino , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA