Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 381, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674981

RESUMO

Animal positions within moving groups may reflect multiple motivations including saving energy and sensing neighbors. These motivations have been proposed for schools of Antarctic krill, but little is known about their three-dimensional structure. Stereophotogrammetric images of Antarctic krill schooling in the laboratory are used to determine statistical distributions of swimming speed, nearest neighbor distance, and three-dimensional nearest neighbor positions. The krill schools swim at speeds of two body lengths per second at nearest neighbor distances of one body length and reach similarly high levels of organization as fish schools. The nearest neighbor position distribution is highly anisotropic and shows that Antarctic krill prefer to swim in the propulsion jet of their anterior neighbor. This position promotes communication and coordination among schoolmates via hydrodynamic signals within the pulsed jet created by the metachronal stroking of the neighboring krill's pleopods. The hydrodynamic communication channel therefore plays a large role in structuring the school. Further, Antarctic krill avoid having a nearest neighbor directly overhead, possibly to avoid blockage of overhead light needed for orientation. Other factors, including the elongated body shape of Antarctic krill and potential energy savings, also may help determine the three dimensional spatial structure of tightly packed krill schools.

2.
AoB Plants ; 10(2): ply015, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29593855

RESUMO

There is high uncertainty in the contribution of land-use change to anthropogenic climate change, especially pertaining to below-ground carbon loss resulting from conversion of primary-to-secondary forest. Soil organic carbon (SOC) and coarse roots are concentrated close to tree trunks, a region usually unmeasured during soil carbon sampling. Soil carbon estimates and their variation with land-use change have not been correspondingly adjusted. Our aim was to deduce allometric equations that will allow improvement of SOC estimates and tree trunk carbon estimates, for primary forest stands that include large trees in rugged terrain. Terrestrial digital photography, photogrammetry and GIS software were used to produce 3D models of the buttresses, roots and humus mounds of large trees in primary forests dominated by Eucalyptus regnans in Tasmania. Models of 29, in situ eucalypts were made and analysed. 3D models of example eucalypt roots, logging debris, rainforest tree species, fallen trees, branches, root and trunk slices, and soil profiles were also derived. Measurements in 2D, from earlier work, of three buttress 'logs' were added to the data set. The 3D models had high spatial resolution. The modelling allowed checking and correction of field measurements. Tree anatomical detail was formulated, such as buttress shape, humus volume, root volume in the under-sampled zone and trunk hollow area. The allometric relationships developed link diameter at breast height and ground slope, to SOC and tree trunk carbon, the latter including a correction for senescence. These formulae can be applied to stand-level carbon accounting. The formulae allow the typically measured, inter-tree SOC to be corrected for not sampling near large trees. The 3D models developed are irreplaceable, being for increasingly rare, large trees, and they could be useful to other scientific endeavours.

3.
Biofouling ; 26(4): 439-48, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20234953

RESUMO

The physical roughness of a surface changes when freshwater biofilms colonize and grow on it and this has significant implications for surfaces enclosing water conveying systems such as pipelines and canals. Plates with surfaces initially artificially roughened with varying grit size were deployed in an open channel system and biofilms were allowed to grow on the exposed surface. The plates were retrieved at intervals in time and their surfaces mapped using close range photogrammetry. For a fine grit surface (0.5-4 mm particles), diatom-dominated biofilms initially grew between the roughness elements; they subsequently developed as a mat to create a physically smoother outer surface than the underlying rough surface. For a coarse grit surface (2-4 mm), biofilms colonized faster; in one instance, larger clumps of biofilm were observed as transverse ripples across the plate.


Assuntos
Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Água Doce , Fotogrametria/métodos , Aço , Diatomáceas/crescimento & desenvolvimento , Água Doce/química , Teste de Materiais , Centrais Elétricas , Aço/química , Propriedades de Superfície , Movimentos da Água
4.
J Acoust Soc Am ; 111(2): 960-71, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11863198

RESUMO

Movement of the external ear canal, associated with jaw motion, relative to the concha region of the pinna has been studied. Pairs of open-jaw and closed-jaw impressions were taken of 14 ears from 10 subjects. Three-dimensional coordinate data were obtained from the concha and the anterior surface of the canal using a reflex microscope. Proprietary area-based matching software was used to evaluate distortion of the two surfaces between the two jaw positions. The canal data from each pair were placed into the same coordinate system with their respective concha regions aligned. Difference maps of the canal data were used to demonstrate the amount of anterior-posterior (A-P), superior-inferior (S-I), and medial-lateral (M-L) movement, relative to the concha, that occurred between the open- and closed-jaw impressions. The concha regions did not undergo significant deformation. The canal regions underwent varying amounts of deformation with all canals conforming within an rms of 136 microm across the entire surface. The majority of canals underwent significant movement relative to the concha. M-L movement ranged from +2.0 to -3.8 mm; eight canals moved laterally, five moved medially, and two showed no movement. S-I movement ranged from +3.7 to -2.7 mm; nine canals moved inferiorly, two moved superiorly, and three showed no movement. A-P movement ranged between +7.5 and -8.5 mm, with five canals moving anteriorly, three posteriorly, and four in a mixed fashion. This study has shown the variability of canal movement relative to the concha and does not support previous reports that suggest that the ear canal only widens with jaw opening.


Assuntos
Meato Acústico Externo/fisiologia , Arcada Osseodentária/fisiologia , Movimento/fisiologia , Adolescente , Adulto , Humanos , Pessoa de Meia-Idade , Conchas Nasais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA