Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Chem Biol ; 4(8): 564-572, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37547453

RESUMO

Pancreatic cancer is highly metastatic and has poor prognosis, mainly due to delayed detection, often after metastasis has occurred. A novel method to enable early detection and disease intervention is strongly needed. Here we unveil for the first time that pancreatic cancer cells (PANC-1) and secreted exosomes express MUC1 bearing cancer-relevant dynamic epitopes recognized specifically by an anti-MUC1 antibody (SN-131), which binds specifically core 1 but not core 2 type O-glycans found in normal cells. Comprehensive assessment of the essential epitope for SN-131 indicates that PANC-1 cells produce dominantly MUC1 with aberrant O-glycoforms such as Tn, T, and sialyl T (ST) antigens. Importantly, SN-131 showed the highest affinity with MUC1 bearing ST antigen at the immunodominant DTR motif (KD = 1.58 nM) independent of the glycosylation states of other Ser/Thr residues in the MUC1 tandem repeats. The X-ray structure revealed that SN-131 interacts directly with Neu5Ac and root GalNAc of the ST antigen in addition to the proximal peptide region. Our results demonstrate that targeting O-glycosylated "dynamic neoepitopes" found in the membrane-tethered MUC1 is a promising therapeutic strategy for improving the treatment outcome of patients with pancreatic cancer.

2.
J Immunol ; 211(5): 755-766, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37417746

RESUMO

Signal-transducing adaptor protein-2 (STAP-2) is an adaptor protein that contains pleckstrin and Src homology 2-like domains, as well as a proline-rich region in its C-terminal region. Our previous study demonstrated that STAP-2 positively regulates TCR signaling by associating with TCR-proximal CD3ζ ITAMs and the lymphocyte-specific protein tyrosine kinase. In this study, we identify the STAP-2 interacting regions of CD3ζ ITAMs and show that the STAP-2-derived synthetic peptide (iSP2) directly interacts with the ITAM sequence and blocks the interactions between STAP-2 and CD3ζ ITAMs. Cell-penetrating iSP2 was delivered into human and murine T cells. iSP2 suppressed cell proliferation and TCR-induced IL-2 production. Importantly, iSP2 treatment suppressed TCR-mediated activation of naive CD4+ T cells and decreased immune responses in CD4+ T cell-mediated experimental autoimmune encephalomyelitis. It is likely that iSP2 is a novel immunomodulatory tool that modulates STAP-2-mediated activation of TCR signaling and represses the progression of autoimmune diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Imunidade , Receptores de Antígenos de Linfócitos T/metabolismo , Fragmentos de Peptídeos/farmacologia
3.
Acta Crystallogr D Struct Biol ; 79(Pt 7): 585-595, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314406

RESUMO

Mannose 2-epimerase (ME), a member of the acylglucosamine 2-epimerase (AGE) superfamily that catalyzes epimerization of D-mannose and D-glucose, has recently been characterized to have potential for D-mannose production. However, the substrate-recognition and catalytic mechanism of ME remains unknown. In this study, structures of Runella slithyformis ME (RsME) and its D254A mutant [RsME(D254A)] were determined in their apo forms and as intermediate-analog complexes [RsME-D-glucitol and RsME(D254A)-D-glucitol]. RsME possesses the (α/α)6-barrel of the AGE superfamily members but has a unique pocket-covering long loop (loopα7-α8). The RsME-D-glucitol structure showed that loopα7-α8 moves towards D-glucitol and closes the active pocket. Trp251 and Asp254 in loopα7-α8 are only conserved in MEs and interact with D-glucitol. Kinetic analyses of the mutants confirmed the importance of these residues for RsME activity. Moreover, the structures of RsME(D254A) and RsME(D254A)-D-glucitol revealed that Asp254 is vital for binding the ligand in a correct conformation and for active-pocket closure. Docking calculations and structural comparison with other 2-epimerases show that the longer loopα7-α8 in RsME causes steric hindrance upon binding to disaccharides. A detailed substrate-recognition and catalytic mechanism for monosaccharide-specific epimerization in RsME has been proposed.


Assuntos
Manose , Racemases e Epimerases , Manose/metabolismo , Especificidade por Substrato , Carboidratos Epimerases/química
4.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614280

RESUMO

Iron-sulfur (Fe-S) clusters are essential cofactors for enzyme activity. These Fe-S clusters are present in structurally diverse forms, including [4Fe-4S] and [3Fe-4S]. Type-identification of the Fe-S cluster is indispensable in understanding the catalytic mechanism of enzymes. However, identifying [4Fe-4S] and [3Fe-4S] clusters in particular is challenging because of their rapid transformation in response to oxidation-reduction events. In this study, we focused on the relationship between the Fe-S cluster type and the catalytic activity of a tRNA-thiolation enzyme (TtuA). We reconstituted [4Fe-4S]-TtuA, prepared [3Fe-4S]-TtuA by oxidizing [4Fe-4S]-TtuA under strictly anaerobic conditions, and then observed changes in the Fe-S clusters in the samples and the enzymatic activity in the time-course experiments. Electron paramagnetic resonance analysis revealed that [3Fe-4S]-TtuA spontaneously transforms into [4Fe-4S]-TtuA in minutes to one hour without an additional free Fe source in the solution. Although the TtuA immediately after oxidation of [4Fe-4S]-TtuA was inactive [3Fe-4S]-TtuA, its activity recovered to a significant level compared to [4Fe-4S]-TtuA after one hour, corresponding to an increase of [4Fe-4S]-TtuA in the solution. Our findings reveal that [3Fe-4S]-TtuA is highly inactive and unstable. Moreover, time-course analysis of structural changes and activity under strictly anaerobic conditions further unraveled the Fe-S cluster type used by the tRNA-thiolation enzyme.


Assuntos
Proteínas Ferro-Enxofre , Ferro , Ferro/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Enxofre/química , RNA de Transferência/química , Proteínas Ferro-Enxofre/metabolismo
5.
J Biol Chem ; 299(1): 102724, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410436

RESUMO

Signal-transducing adaptor family member-2 (STAP-2) is an adaptor protein that regulates various intracellular signals. We previously demonstrated that STAP-2 binds to epidermal growth factor receptor (EGFR) and facilitates its stability and activation of EGFR signaling in prostate cancer cells. Inhibition of this interaction may be a promising direction for cancer treatment. Here, we found that 2D5 peptide, a STAP-2-derived peptide, blocked STAP-2-EGFR interactions and suppressed EGFR-mediated proliferation in several cancer cell lines. 2D5 peptide inhibited tumor growth of human prostate cancer cell line DU145 and human lung cancer cell line A549 in murine xenograft models. Additionally, we determined that EGFR signaling and its stability were decreased by 2D5 peptide treatment during EGF stimulation. In conclusion, our study shows that 2D5 peptide is a novel anticancer peptide that inhibits STAP-2-mediated activation of EGFR signaling and suppresses prostate and lung cancer progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Pulmonares , Peptídeos , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Células A549 , Linhagem Celular Tumoral , Peptídeos/farmacologia
6.
Biochem J ; 479(20): 2261-2278, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36305710

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a carcinogenic virus that latently infects B cells and causes malignant tumors in immunocompromised patients. KSHV utilizes two viral E3 ubiquitin ligases, K3 and K5, in KSHV-infected cells to mediate the polyubiquitination-dependent down-regulation of several host membrane proteins involved in the immune system. Although K3 and K5 are members of the same family and have similar structural topologies, K3 and K5 have different substrate specificities. Hence, K5 may have a different substrate recognition mode than K3; however, the molecular basis of substrate recognition remains unclear. Here, we investigated the reason why human CD8α, which is known not to be a substrate for both K3 and K5, is not recognized by them, to obtain an understanding for molecular basis of substrate specificity. CD8α forms a disulfide-linked homodimer under experimental conditions to evaluate the viral ligase-mediated down-regulation. It is known that two interchain disulfide linkages in the stalk region between each CD8α monomer (Cys164-Cys164 and Cys181-Cys181) mediate homodimerization. When the interchain disulfide linkage of Cys181-Cys181 was eliminated, CD8α was down-regulated by K5 with a functional RING variant (RINGv) domain via polyubiquitination at the cytoplasmic tail. Aspartic acid, located at the stalk/transmembrane interface of CD8α, was essential for K5-mediated down-regulation of the CD8α mutant without a Cys181-Cys181 linkage. These results suggest that disulfide linkage near the stalk/transmembrane interface critically inhibits substrate targeting by K5. Accessibility to the extracellular juxtamembrane stalk region of membrane proteins may be important for substrate recognition by the viral ubiquitin ligase K5.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Humanos , Ubiquitina/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas de Membrana/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Dissulfetos/metabolismo
7.
Viruses ; 13(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34835117

RESUMO

Rabies has almost a 100% case-fatality rate and kills more than 59,000 people annually around the world. There is no established treatment for rabies. The rabies virus (RABV) expresses only the glycoprotein (RABVG) at the viral surface, and it is the target for the neutralizing antibodies. We previously established mouse monoclonal antibodies, 15-13 and 12-22, which showed neutralizing activity against the RABV, targeting the sequential and conformational epitopes on the RABVG, respectively. However, the molecular basis for the neutralizing activity of these antibodies is not yet fully understood. In this study, we evaluated the binding characteristics of the Fab fragments of the 15-13 and 12-22 antibodies. The recombinant RABVG protein, in prefusion form for the binding analysis, was prepared by the silkworm-baculovirus expression system. Biolayer interferometry (BLI) analysis indicated that the 15-13 Fab interacts with the RABVG, with a KD value at the nM level, and that the 12-22 Fab has a weaker binding affinity (KD ~ µM) with the RABVG compared to the 15-13 Fab. Furthermore, we determined the amino acid sequences of both the antibodies and the designed single-chain Fv fragments (scFvs) of the 15-13 and 12-22 antibodies as another potential biopharmaceutical for targeting rabies. The 15-13 and 12-22 scFvs were successfully prepared by the refolding method and were shown to interact with the RABVG at the nM level and the µM level of the KD, respectively. These binding characteristics were similar to that of each Fab. On the other hand, differential scanning fluorometry (DSF) revealed that the thermal stability of these scFvs decreases compared to their Fabs. While the improvement of the stability of scFvs will still be required, these results provide insights into the neutralizing activity and the potential therapeutic use of antibody fragments for RABV infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Vírus da Raiva/imunologia , Raiva/virologia , Proteínas Virais/imunologia , Animais , Células Cultivadas , Humanos , Camundongos , Proteínas Recombinantes/imunologia
8.
Biochem Biophys Res Commun ; 529(2): 507-512, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703459

RESUMO

Lyssavirus P protein is a multifunctional protein that interacts with numerous host-cell proteins. The C-terminal domain (CTD) of P is important for inhibition of JAK-STAT signaling enabling the virus to evade host immunity. Several regions on the surface of rabies virus P are reported to interact with host factors. Among them, an extended, discrete hydrophobic patch of P CTD is notable. Although structures of P CTD of two strains of rabies virus, and of mokola virus have been solved, the structure of P CTD for Duvenhage virus, which is functionally divergent from these species for immune evasion function, is not known. Here, we analyze the structures of P CTD of Duvenhage and of a distinct rabies virus strain to gain further insight on the nature and potential function of the hydrophobic surface. Molecular contacts in crystals suggest that the hydrophobic patch is important to intermolecular interactions with other proteins, which differ between the lyssavirus species.


Assuntos
Lyssavirus/química , Infecções por Rhabdoviridae/virologia , Proteínas Virais/química , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
9.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32581091

RESUMO

Measles virus (MeV) is a highly immunotropic and contagious pathogen that can even diminish preexisting antibodies and remains a major cause of childhood morbidity and mortality worldwide despite the availability of effective vaccines. MeV is one of the most extensively studied viruses with respect to the mechanisms of JAK-STAT antagonism. Of the three proteins translated from the MeV P gene, P and V are essential for inactivation of this pathway. However, the lack of data from direct analyses of the underlying interactions means that the detailed molecular mechanism of antagonism remains unresolved. Here, we prepared recombinant MeV V protein, which is responsible for human JAK-STAT antagonism, and a panel of variants, enabling the biophysical characterization of V protein, including direct V/STAT1 and V/STAT2 interaction assays. Unambiguous direct interactions between the host and viral factors, in the absence of other factors such as Jak1 or Tyk2, were observed, and the dissociation constants were quantified for the first time. Our data indicate that interactions between the C-terminal region of V and STAT2 is 1 order of magnitude stronger than that of the N-terminal region of V and STAT1. We also clarified that these interactions are completely independent of each other. Moreover, results of size exclusion chromatography demonstrated that addition of MeV-V displaces STAT2-core, a rigid region of STAT2 lacking the N- and C-terminal domains, from preformed complexes of STAT2-core/IRF-associated domain (IRF9). These results provide a novel model whereby MeV-V can not only inhibit the STAT2/IRF9 interaction but also disrupt preassembled interferon-stimulated gene factor 3.IMPORTANCE To evade host immunity, many pathogenic viruses inactivate host Janus kinase signal transducer and activator of transcription (STAT) signaling pathways using diverse strategies. Measles virus utilizes P and V proteins to counteract this signaling pathway. Data derived largely from cell-based assays have indicated several amino acid residues of P and V proteins as important. However, biophysical properties of V protein or its direct interaction with STAT molecules using purified proteins have not been studied. We have developed novel molecular tools enabling us to identify a novel molecular mechanism for immune evasion whereby V protein disrupts critical immune complexes, providing a clear strategy by which measles virus can suppress interferon-mediated antiviral gene expression.


Assuntos
Fator Gênico 3 Estimulado por Interferon, Subunidade gama/química , Vírus do Sarampo/metabolismo , Fosfoproteínas/química , Fator de Transcrição STAT2/química , Proteínas Virais/química , Sítios de Ligação , Expressão Gênica , Humanos , Evasão da Resposta Imune , Imunidade Inata , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Janus Quinases/metabolismo , Vírus do Sarampo/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Dedos de Zinco
10.
Protein Expr Purif ; 172: 105631, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32213313

RESUMO

CD1d is a major histocompatibility complex (MHC) class I-like glycoprotein and binds to glycolipid antigens that are recognized by natural killer T (NKT) cells. To date, our understanding of the structural basis for glycolipid binding and receptor recognition of CD1d is still limited. Here, we established a preparation method for the ectodomain of human and mouse CD1d using a silkworm-baculovirus expression system. The co-expression of human and mouse CD1d and ß2-microglobulin (ß2m) in the silkworm-baculovirus system was successful, but the yield of human CD1d was low. A construct of human CD1d fused with ß2m via a flexible GS linker as a single polypeptide was prepared to improve protein yield. The production of this single-chained complex was higher (50 µg/larva) than that of the co-expression complex. Furthermore, differential scanning calorimetry revealed that the linker made the CD1d complex more stable and homogenous. These results suggest that the silkworm-baculovirus expression system is useful for structural and biophysical studies of CD1d in several aspects including low cost, easy handling, biohazard-free, rapid, and high yielding.


Assuntos
Antígenos CD1d , Baculoviridae , Expressão Gênica , Animais , Antígenos CD1d/biossíntese , Antígenos CD1d/química , Antígenos CD1d/genética , Antígenos CD1d/isolamento & purificação , Bombyx , Humanos , Camundongos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
11.
iScience ; 23(1): 100758, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31927483

RESUMO

The human immunodeficiency virus (HIV) accessory protein Nef plays a major role in establishing and maintaining infection, particularly through immune evasion. Many HIV-2-infected people experience long-term viral control and survival, resembling HIV-1 elite control. HIV-2 Nef has overlapping but also distinct functions from HIV-1 Nef. Here we report the crystal structure of HIV-2 Nef core. The di-leucine sorting motif forms a helix bound to neighboring molecules, and moreover, isothermal titration calorimetry demonstrated that the CD3 endocytosis motif can directly bind to HIV-2 Nef, ensuring AP-2-mediated endocytosis for CD3. The highly conserved C-terminal region forms a α-helix, absent from HIV-1. We further determined the structure of simian immunodeficiency virus (SIV) Nef harboring this region, demonstrating similar C-terminal α-helix, which may contribute to AP-1 binding for MHC-I downregulation. These results provide insights into the distinct pathogenesis of HIV-2 infection.

12.
Chem Sci ; 11(19): 4999-5006, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-34122956

RESUMO

Aberrantly truncated immature O-glycosylation in proteins occurs in essentially all types of epithelial cancer cells, which was demonstrated to be a common feature of most adenocarcinomas and strongly associated with cancer proliferation and metastasis. Although extensive efforts have been made toward the development of anticancer antibodies targeting MUC1, one of the most studied mucins having cancer-relevant immature O-glycans, no anti-MUC1 antibody recognises carbohydrates and the proximal MUC1 peptide region, concurrently. Here we present a general strategy that allows for the creation of antibodies interacting specifically with glycopeptidic neoepitopes by using homogeneous synthetic MUC1 glycopeptides designed for the streamlined process of immunization, antibody screening, three-dimensional structure analysis, epitope mapping and biochemical analysis. The X-ray crystal structure of the anti-MUC1 monoclonal antibody SN-101 complexed with the antigenic glycopeptide provides for the first time evidence that SN-101 recognises specifically the essential epitope by forming multiple hydrogen bonds both with the proximal peptide and GalNAc linked to the threonine residue, concurrently. Remarkably, the structure of the MUC1 glycopeptide in complex with SN-101 is identical to its solution NMR structure, an extended conformation induced by site-specific glycosylation. We demonstrate that this method accelerates dramatically the development of a new class of designated antibodies targeting a variety of "dynamic neoepitopes" elaborated by disease-specific O-glycosylation in the immunodominant mucin domains and mucin-like sequences found in intrinsically disordered regions of many proteins.

14.
FEBS J ; 287(1): 145-159, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31287622

RESUMO

The measles virus (MV) is a major cause of childhood morbidity and mortality worldwide. We previously established a mouse monoclonal antibody, 2F4, which shows high neutralizing titers against eight different genotypes of MV. However, the molecular basis for the neutralizing activity of the 2F4 antibody remains incompletely understood. Here, we have evaluated the binding characteristics of a Fab fragment of the 2F4 antibody. Using the MV infectious assay, we demonstrated that 2F4 Fab inhibits viral entry via either of two cellular receptors, SLAM and Nectin4. Surface plasmon resonance (SPR) analysis of recombinant proteins indicated that 2F4 Fab interacts with MV hemagglutinin (MV-H) with a KD value at the nm level. Furthermore, we designed a single-chain Fv fragment of 2F4 antibody as another potential biopharmaceutical to target measles. The stable 2F4 scFv was successfully prepared by the refolding method and shown to interact with MV-H at the µm level. Like 2F4 Fab, scFv inhibited receptor binding and viral entry. This indicates that 2F4 mAb uses the receptor-binding site and/or a neighboring region as an epitope with high affinity. These results provide insight into the neutralizing activity and potential therapeutic use of antibody fragments for MV infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Vírus do Sarampo/imunologia , Sarampo/imunologia , Anticorpos de Cadeia Única/imunologia , Proteínas Virais/imunologia , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/genética , Epitopos/imunologia , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/biossíntese , Fragmentos Fab das Imunoglobulinas/genética , Sarampo/virologia , Nectinas/antagonistas & inibidores , Nectinas/imunologia , Nectinas/metabolismo , Ligação Proteica , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/antagonistas & inibidores , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/genética , Internalização do Vírus
15.
J Immunol ; 203(12): 3386-3394, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31694909

RESUMO

Human leukocyte Ig-like receptors (LILR) LILRB1 and LILRB2 are immune checkpoint receptors that regulate a wide range of physiological responses by binding to diverse ligands, including HLA-G. HLA-G is exclusively expressed in the placenta, some immunoregulatory cells, and tumors and has several unique isoforms. However, the recognition of HLA-G isoforms by LILRs is poorly understood. In this study, we characterized LILR binding to the ß2-microglobulin (ß2m)-free HLA-G1 isoform, which is synthesized by placental trophoblast cells and tends to dimerize and multimerize. The multimerized ß2m-free HLA-G1 dimer lacked detectable affinity for LILRB1, but bound strongly to LILRB2. We also determined the crystal structure of the LILRB1 and HLA-G1 complex, which adopted the typical structure of a classical HLA class I complex. LILRB1 exhibits flexible binding modes with the α3 domain, but maintains tight contacts with ß2m, thus accounting for ß2m-dependent binding. Notably, both LILRB1 and B2 are oriented at suitable angles to permit efficient signaling upon complex formation with HLA-G1 dimers. These structural and functional features of ligand recognition by LILRs provide novel insights into their important roles in the biological regulations.


Assuntos
Antígenos HLA-G/química , Modelos Moleculares , Conformação Proteica , Receptores Imunológicos/química , Sítios de Ligação , Antígenos HLA-G/genética , Antígenos HLA-G/imunologia , Humanos , Ligantes , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Isoformas de Proteínas , Receptores Imunológicos/metabolismo , Relação Estrutura-Atividade , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo
16.
Cell Rep ; 29(7): 1934-1945.e8, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722208

RESUMO

To evade immunity, many viruses express interferon antagonists that target STAT transcription factors as a major component of pathogenesis. Because of a lack of direct structural data, these interfaces are poorly understood. We report the structural analysis of full-length STAT1 binding to an interferon antagonist of a human pathogenic virus. The interface revealed by transferred cross-saturation NMR is complex, involving multiple regions in both the viral and cellular proteins. Molecular mapping analysis, combined with biophysical characterization and in vitro/in vivo functional assays, indicates that the interface is significant in disease caused by a pathogenic field-strain lyssavirus, with critical roles for contacts between the STAT1 coiled-coil/DNA-binding domains and specific regions within the viral protein. These data elucidate the potentially complex nature of IFN antagonist/STAT interactions, and the spatial relationship of protein interfaces that mediate immune evasion and replication, providing insight into how viruses can regulate these essential functions via single multifunctional proteins.


Assuntos
Imunidade Inata , Lyssavirus , Fator de Transcrição STAT1 , Animais , Células COS , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Lyssavirus/química , Lyssavirus/imunologia , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia
17.
Viruses ; 11(8)2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430904

RESUMO

Measles virus (MV) and canine distemper virus (CDV) are highly contagious and deadly, forming part of the morbillivirus genus. The receptor recognition by morbillivirus hemagglutinin (H) is important for determining tissue tropism and host range. Recent reports largely urge caution as regards to the potential expansion of host specificities of morbilliviruses. Nonetheless, the receptor-binding potential in different species of morbillivirus H proteins is largely unknown. Herein, we show that the CDV-H protein binds to the dog signaling lymphocyte activation molecule (SLAM), but not to the human, tamarin, or mouse SLAM. In contrast, MV-H can bind to human, tamarin and dog SLAM, but not to that of mice. Notably, MV binding to dog SLAM showed a lower affinity and faster kinetics than that of human SLAM, and MV exhibits a similar entry activity in dog SLAM- and human SLAM-expressing Vero cells. The mutagenesis study using a fusion assay, based on the MV-H-SLAM complex structure, revealed differences in tolerance for the receptor specificity between MV-H and CDV-H. These results provide insights into H-SLAM specificity related to potential host expansion.


Assuntos
Vírus da Cinomose Canina/metabolismo , Cinomose/metabolismo , Hemaglutininas Virais/metabolismo , Vírus do Sarampo/metabolismo , Sarampo/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Animais , Cinomose/genética , Cinomose/virologia , Vírus da Cinomose Canina/genética , Cães , Hemaglutininas Virais/genética , Humanos , Sarampo/genética , Sarampo/virologia , Vírus do Sarampo/genética , Camundongos , Ligação Proteica , Receptores Virais/genética , Receptores Virais/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Especificidade da Espécie
18.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 3): 193-196, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30839294

RESUMO

Heterotrimeric glutamine amidotransferase CAB (GatCAB) possesses an ammonia-self-sufficient mechanism in which ammonia is produced and used in the inner complex by GatA and GatB, respectively. The X-ray structure of GatCAB revealed that the two identified active sites of GatA and GatB are markedly distant, but are connected in the complex by a channel of 30 Šin length. In order to clarify whether ammonia is transferred through this channel in GatCAB by visualizing ammonia, neutron diffraction studies are indispensable. Here, GatCAB crystals were grown to approximate dimensions of 2.8 × 0.8 × 0.8 mm (a volume of 1.8 mm3) with the aid of a polymer using microseeding and macroseeding processes. Monochromatic neutron diffraction data were collected using the neutron single-crystal diffractometer BIODIFF at the Heinz Maier-Leibnitz Zentrum, Germany. The GatCAB crystals belonged to space group P212121, with unit-cell parameters a = 74.6, b = 94.5, c = 182.5 Šand with one GatCAB complex (molecular mass 119 kDa) in the asymmetric unit. This study represented a challenge in current neutron diffraction technology.


Assuntos
Cristalografia por Raios X/métodos , Glutamina/química , Difração de Nêutrons/métodos , Transferases/química , Sequência de Aminoácidos , Domínio Catalítico
19.
J Biol Chem ; 294(4): 1250-1256, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30504218

RESUMO

Venomous snakes have endogenous proteins that neutralize the toxicity of their venom components. We previously identified five small serum proteins (SSP-1-SSP-5) from a highly venomous snake belonging to the family Viperidae as inhibitors of various toxins from snake venom. The endogenous inhibitors belong to the prostate secretory protein of 94 amino acids (PSP94) family. SSP-2 interacts with triflin, which is a member of the cysteine-rich secretory protein (CRISP) family that blocks smooth muscle contraction. However, the structural basis for the interaction and the biological roles of these inhibitors are largely unknown. Here, we determined the crystal structure of the SSP-2-triflin complex at 2.3 Å resolution. A concave region centrally located in the N-terminal domain of triflin is fully occupied by the terminal ß-strands of SSP-2. SSP-2 does not bind tightly to the C-terminal cysteine-rich domain of triflin; this domain is thought to be responsible for its channel-blocker function. Instead, the cysteine-rich domain is tilted 7.7° upon binding to SSP-2, and the inhibitor appears to sterically hinder triflin binding to calcium channels. These results help explain how an endogenous inhibitor prevents the venomous protein from maintaining homeostasis in the host. Furthermore, this interaction also sheds light on the binding interface between the human homologues PSP94 and CRISP-3, which are up-regulated in prostate and ovarian cancers.


Assuntos
Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Proteínas Secretadas pela Próstata/metabolismo , Venenos de Serpentes/química , Venenos de Serpentes/metabolismo , Viperidae/metabolismo , Sequência de Aminoácidos , Animais , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Proteínas Secretadas pela Próstata/química , Conformação Proteica , Homologia de Sequência
20.
Biomol NMR Assign ; 13(1): 5-8, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30238347

RESUMO

The C-terminal domain of the P protein of rabies virus is a multifunctional domain that interacts with both viral and host cell proteins. Here we report the 1H, 13C and 15N chemical shift assignments of this domain from P protein of the Nishigahara strain of rabies virus, a pathogenic laboratory strain well established for studies of virulence functions of rabies virus proteins, including P protein. The data and secondary structure analysis are in good agreement with the reported predominantly helical structure of the same domain from the CVS strain of rabies solved by crystallography. These assignments will enable future solution studies of the interactions of the P protein with viral and host proteins, and the effects of post-translational modifications.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Fosfoproteínas/química , Vírus da Raiva/química , Proteínas Estruturais Virais/química , Isótopos de Carbono , Chaperonas Moleculares , Isótopos de Nitrogênio , Domínios Proteicos , Estrutura Secundária de Proteína , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA