RESUMO
Plasma analysis by mass spectrometry-based proteomics remains a challenge due to its large dynamic range of 10 orders in magnitude. We created a methodology for protein identification known as Wise MS Transfer (WiMT). Melanoma plasma samples from biobank archives were directly analyzed using simple sample preparation. WiMT is based on MS1 features between several MS runs together with custom protein databases for ID generation. This entails a multi-level dynamic protein database with different immunodepletion strategies by applying single-shot proteomics. The highest number of melanoma plasma proteins from undepleted and unfractionated plasma was reported, mapping >1200 proteins from >10,000 protein sequences with confirmed significance scoring. Of these, more than 660 proteins were annotated by WiMT from the resulting ~5800 protein sequences. We could verify 4000 proteins by MS1t analysis from HeLA extracts. The WiMT platform provided an output in which 12 previously well-known candidate markers were identified. We also identified low-abundant proteins with functions related to (i) cell signaling, (ii) immune system regulators, and (iii) proteins regulating folding, sorting, and degradation, as well as (iv) vesicular transport proteins. WiMT holds the potential for use in large-scale screening studies with simple sample preparation, and can lead to the discovery of novel proteins with key melanoma disease functions.
RESUMO
The discovery of novel protein biomarkers in melanoma is crucial. Our introduction of formalin-fixed paraffin-embedded (FFPE) tumor protocol provides new opportunities to understand the progression of melanoma and open the possibility to screen thousands of FFPE samples deposited in tumor biobanks and available at hospital pathology departments. In our retrospective biobank pilot study, 90 FFPE samples from 77 patients were processed. Protein quantitation was performed by high-resolution mass spectrometry and validated by histopathologic analysis. The global protein expression formed six sample clusters. Proteins such as TRAF6 and ARMC10 were upregulated in clusters with enrichment for shorter survival, and proteins such as AIFI1 were upregulated in clusters with enrichment for longer survival. The cohort's heterogeneity was addressed by comparing primary and metastasis samples, as well comparing clinical stages. Within immunotherapy and targeted therapy subgroups, the upregulation of the VEGFA-VEGFR2 pathway, RNA splicing, increased activity of immune cells, extracellular matrix, and metabolic pathways were positively associated with patient outcome. To summarize, we were able to (i) link global protein expression profiles to survival, and they proved to be an independent prognostic indicator, as well as (ii) identify proteins that are potential predictors of a patient's response to immunotherapy and targeted therapy, suggesting new opportunities for precision medicine developments.
RESUMO
The MM500 meta-study aims to establish a knowledge basis of the tumor proteome to serve as a complement to genome and transcriptome studies. Somatic mutations and their effect on the transcriptome have been extensively characterized in melanoma. However, the effects of these genetic changes on the proteomic landscape and the impact on cellular processes in melanoma remain poorly understood. In this study, the quantitative mass-spectrometry-based proteomic analysis is interfaced with pathological tumor characterization, and associated with clinical data. The melanoma proteome landscape, obtained by the analysis of 505 well-annotated melanoma tumor samples, is defined based on almost 16 000 proteins, including mutated proteoforms of driver genes. More than 50 million MS/MS spectra were analyzed, resulting in approximately 13,6 million peptide spectrum matches (PSMs). Altogether 13 176 protein-coding genes, represented by 366 172 peptides, in addition to 52 000 phosphorylation sites, and 4 400 acetylation sites were successfully annotated. This data covers 65% and 74% of the predicted and identified human proteome, respectively. A high degree of correlation (Pearson, up to 0.54) with the melanoma transcriptome of the TCGA repository, with an overlap of 12 751 gene products, was found. Mapping of the expressed proteins with quantitation, spatiotemporal localization, mutations, splice isoforms, and PTM variants was proven not to be predicted by genome sequencing alone. The melanoma tumor molecular map was complemented by analysis of blood protein expression, including data on proteins regulated after immunotherapy. By adding these key proteomic pillars, the MM500 study expands the knowledge on melanoma disease.
Assuntos
Melanoma/patologia , Proteoma/metabolismo , Proteômica/métodos , Transcriptoma , Antineoplásicos/uso terapêutico , Proteínas Sanguíneas/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Bases de Dados Factuais , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Mutação , Processamento de Proteína Pós-Traducional/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Espectrometria de Massas em TandemRESUMO
The MM500 study is an initiative to map the protein levels in malignant melanoma tumor samples, focused on in-depth histopathology coupled to proteome characterization. The protein levels and localization were determined for a broad spectrum of diverse, surgically isolated melanoma tumors originating from multiple body locations. More than 15,500 proteoforms were identified by mass spectrometry, from which chromosomal and subcellular localization was annotated within both primary and metastatic melanoma. The data generated by global proteomic experiments covered 72% of the proteins identified in the recently reported high stringency blueprint of the human proteome. This study contributes to the NIH Cancer Moonshot initiative combining detailed histopathological presentation with the molecular characterization for 505 melanoma tumor samples, localized in 26 organs from 232 patients.
Assuntos
Melanoma/patologia , Proteoma/análise , Proteômica/métodos , Neoplasias Cutâneas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Melanoma/metabolismo , Pessoa de Meia-Idade , Neoplasias Cutâneas/metabolismo , Espectrometria de Massas em Tandem , Adulto Jovem , Melanoma Maligno CutâneoRESUMO
Apelin, a ligand of the APJ receptor, is overexpressed in several human cancers and plays an important role in tumor angiogenesis and growth in various experimental systems. We investigated the role of apelin signaling in the malignant behavior of cutaneous melanoma. Murine B16 and human A375 melanoma cell lines were stably transfected with apelin encoding or control vectors. Apelin overexpression significantly increased melanoma cell migration and invasion in vitro, but it had no impact on its proliferation. In our in vivo experiments, apelin significantly increased the number and size of lung metastases of murine melanoma cells. Melanoma cell proliferation rates and lymph and blood microvessel densities were significantly higher in the apelin-overexpressing pulmonary metastases. APJ inhibition by the competitive APJ antagonist MM54 significantly attenuated the in vivo pro-tumorigenic effects of apelin. Additionally, we detected significantly elevated circulating apelin and VEGF levels in patients with melanoma compared to healthy controls. Our results show that apelin promotes blood and lymphatic vascularization and the growth of pulmonary metastases of skin melanoma. Further studies are warranted to validate apelin signaling as a new potential therapeutic target in this malignancy.
Assuntos
Apelina/efeitos adversos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/secundário , Linfangiogênese , Melanoma Experimental/patologia , Neovascularização Patológica/patologia , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/sangue , Masculino , Melanoma Experimental/sangue , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Neovascularização Patológica/sangue , Fator A de Crescimento do Endotélio Vascular/sangueRESUMO
Malignant melanoma is among the most aggressive skin cancers and it has among the highest metastatic potentials. Although surgery to remove the primary tumor is the gold standard treatment, once melanoma progresses and metastasizes to the lymph nodes and distal organs, i.e., metastatic melanoma (MM), the usual outcome is decreased survival. To improve survival rates and life span, advanced treatments have focused on the success of targeted therapies in the MAPK pathway that are based on BRAF (BRAF V600E) and MEK. The majority of patients with tumors that have higher expression of BRAF V600E show poorer prognosis than patients with a lower level of the mutated protein. Based on the molecular basis of melanoma, these findings are supported by distinct tumor phenotypes determined from differences in tumor heterogeneity and protein expression profiles. With these aspects in mind, continued challenges are to: (1) deconvolute the complexity and heterogeneity of MM; (2) identify the signaling pathways involved; and (3) determine protein expression to develop targeted therapies. Here, we provide an overview of the results from protein expression in MM and the link to disease presentation in a variety of tumor phenotypes and how these will overcome the challenges of clinical problems and suggest new promising approaches in metastatic melanoma and cancer therapy.
RESUMO
Adenosine is generated in the microenvironment of emerging thymocytes through normal mechanisms of lymphocyte selection. In a normal thymus, most of the adenosine is catabolized by adenosine deaminase; however, in an environment where up to 95% of the cells undergo programmed cell death, a sufficient amount of adenosine is accumulated to trigger cell surface adenosine receptors. Here we show that accumulated adenosine can induce apoptosis in immature mouse thymocytes, mostly via adenosine A(2A) receptors. The signaling pathway is coupled to adenylate cyclase activation, induction of the Nur77 transcription factor, Nur77-dependent genes, such as Fas ligand and TRAIL, and the pro-apoptotic BH3-only protein Bim. We analyzed several knockout and transgenic mouse lines and found that adenosine-induced killing of mouse thymocytes requires Bim, occurs independently of "death receptor" signaling and is inhibited by Bcl-2 and Nur77. Collectively our data demonstrate that adenosine-induced cell death involves signaling pathways originally found in negative selection of thymocytes and suggest a determining role of Bim and a regulatory role for Nur77.