Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(1): 82-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36995071

RESUMO

Around 30% of acute myeloid leukemia (AML) patients have triggering mutations in Feline McDonough Sarcoma (FMS)-like tyrosine kinase 3 (FLT3), which has been suggested as a possible therapeutic candidate for AML therapy. Many tyrosine kinase inhibitors are available and have a wide variety of applications in the treatment of cancer by inhibiting subsequent steps of cell proliferation. Therefore, our study aims to identify effective antileukemic agents against FLT3 gene. Initially, well-known antileukemic drug candidates have been chosen to generate a structure-based pharmacophore model to assist the virtual screening of 217,77,093 compounds from the Zinc database. The final hits compounds were retrieved and evaluated by docking against the target protein, where the top four compounds have been selected for the analysis of ADMET. Based on the density functional theory (DFT), the geometry optimization, frontier molecular orbital (FMO), HOMO-LUMO, and global reactivity descriptor values have been evaluated that confirming a satisfactory profile and reactivity order for the selected candidates. In comparison to control compounds, the docking results revealed that the four compounds had substantial binding energies (-11.1 to -11.5 kcal/mol) with FLT3. The physicochemical and ADMET (adsorption, distribution, metabolism, excretion, toxicity) prediction results corresponded to the bioactive and safe candidates. Molecular dynamics (MD) confirmed the better binding affinity and stability compared to gilteritinib as a potential FLT3 inhibitor. In this study, a computational approach has been performed that found a better docking and dynamics score against target proteins, indicating potent and safe antileukemic agents, furthermore in-vivo and in-vitro investigations are recommended.Communicated by Ramaswamy H. Sarma.


Assuntos
Leucemia Mieloide Aguda , Simulação de Dinâmica Molecular , Humanos , Animais , Gatos , Simulação de Acoplamento Molecular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/metabolismo , Tirosina Quinase 3 Semelhante a fms/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/química
2.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836795

RESUMO

We report on organoboron complexes characterized by very small energy gaps (ΔEST) between their singlet and triplet states, which allow for highly efficient harvesting of triplet excitons into singlet states for working as thermally activated delayed fluorescence (TADF) devices. Energy gaps ranging between 0.01 and 0.06 eV with dihedral angles of ca. 90° were registered. The spin-orbit couplings between the lowest excited S1 and T1 states yielded reversed intersystem crossing rate constants (KRISC) of an average of 105 s-1. This setup accomplished radiative decay rates of ca. 106 s-1, indicating highly potent electroluminescent devices, and hence, being suitable for application as organic light-emitting diodes.

3.
J Mol Graph Model ; 117: 108281, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35987187

RESUMO

The gas-phase hydroaminoalkylation reaction of propene catalyzed by group 4 (M = Ti, Zr and Hf) metal amido complexes [(≡Si-O-)(M(-NMe2)3] was investigated by using PBE0-D3/SVP//TZVP level of theory. The geometrical analysis traced the formation of the metallaaziridines and the azametallacyclopentanes as key intermediates in these reactions. The metallaaziridines were simulated through the activation of α-C-H bonds of the amido groups; while the azametallacyclopentanes were configured by slotting the propene double bond onto the M - C bonds of the metallaaziridines. The latter reaction was considered the rate-determining step. Thermochemical calculations showed that the order of catalytic activity is: Ti ≥ Zr > Hf; while the preference of the azametallacyclopentanes is: Hf > Zr ≥ Ti.

4.
Molecules ; 27(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408488

RESUMO

Colorectal cancer (CRC) is the second most common cause of death worldwide, affecting approximately 1.9 million individuals in 2020. Therapeutics of the disease are not yet available and discovering a novel anticancer drug candidate against the disease is an urgent need. Thymidylate synthase (TS) is an important enzyme and prime precursor for DNA biosynthesis that catalyzes the methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) that has emerged as a novel drug target against the disease. Elevated expression of TS in proliferating cells promotes oncogenesis as well as CRC. Therefore, this study aimed to identify potential natural anticancer agents that can inhibit the activity of the TS protein, subsequently blocking the progression of colorectal cancer. Initially, molecular docking was implied on 63 natural compounds identified from Catharanthus roseus and Avicennia marina to evaluate their binding affinity to the desired protein. Subsequently, molecular dynamics (MD) simulation, ADME (Absorption, Distribution, Metabolism, and Excretion), toxicity, and quantum chemical-based DFT (density-functional theory) approaches were applied to evaluate the efficacy of the selected compounds. Molecular docking analysis initially identified four compounds (PubChem CID: 5281349, CID: 102004710, CID: 11969465, CID: 198912) that have better binding affinity to the target protein. The ADME and toxicity properties indicated good pharmacokinetics (PK) and toxicity ability of the selected compounds. Additionally, the quantum chemical calculation of the selected molecules found low chemical reactivity indicating the bioactivity of the drug candidate. The global descriptor and HOMO-LUMO energy gap values indicated a satisfactory and remarkable profile of the selected molecules. Furthermore, MD simulations of the compounds identified better binding stability of the compounds to the desired protein. To sum up, the phytoconstituents from two plants showed better anticancer activity against TS protein that can be further developed as an anti-CRC drug.


Assuntos
Antineoplásicos , Avicennia , Catharanthus , Neoplasias Colorretais , Antineoplásicos/química , Antineoplásicos/farmacologia , Avicennia/metabolismo , Catharanthus/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Timidilato Sintase/metabolismo
5.
J Fluoresc ; 32(2): 691-705, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35040031

RESUMO

The present study presents a thorough theoretical analysis of the electronic structure and conformational preference of Schiff's base ligand N,N-bis(2-hydroxybenzilidene)-2,4,6-trimethyl benzene-1,3-diamine (H2L) and its metal complexes with Zn2+, Cu2+ and Ag+ ions. This study aims to investigate the behavior of H2L and the binuclear Zn2+ complex (1) as fluorescent probes for the detection of metal ions (Zn2+, Cu2+ and Ag+) using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The six conformers of the H2L ligand were optimized using the B3LYP/6-311 + + G** level of theory, while the L-2-metal complexes were optimized by applying the B3LYP functional with the LANL2DZ/6-311 + + G** mixed basis set. The gas-phase and solvated Enol-cis isomer (E-cis) was found to be the most stable species. The absorption spectra of the E-cis isomer and its metal complexes were simulated using B3LYP, CAM-B3LYP, M06-2X and ωB97X functionals with a 6-311 + + G** basis set for C, O, N and H atoms and a LANL2DZ basis set for the metal ions (Zn2+, Cu2+ and Ag+). The computational results of the B3LYP functional were in excellent agreement with the experimental results. Hence, it was adopted for performing the emission calculations. The results indicated that metal complex (1) can act as a fluorescent chemosensor for the detection of Ag+ and Cu2+ ions through the mechanism of intermolecular charge transfer (ICT) and as a molecular switch "On-Off-On" via the replacement of Cu2+ by Ag+ ions, as proved experimentally.

6.
Int J Mol Sci ; 18(2)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28157151

RESUMO

The structure, reactivity, natural bond orbital (NBO), linear and nonlinear optical (NLO) properties of three thiazole azo dyes (A, B and C) were monitored by applying B3LYP, CAM-B3LYP and ωB97XD functionals with 6-311++G** and aug-cc-pvdz basis sets. The geometrical parameters,dipolemoments,HOMO-LUMO(highest occupied molecular orbital,lowest unoccupied molecular orbital) energy gaps, absorption wavelengths and total hyperpolarizabilities were investigated in carbon tetrachloride (CCl4) chloroform (CHCl3), dichloromethane (CH2Cl2) and dimethlysulphoxide (DMSO). The donor methoxyphenyl group deviates from planarity with the thiazole azo moiety by ca. 38◦; while the acceptor dicyanovinyl, indandione and dicyanovinylindanone groups diverge by ca. 6◦. The HOMOs for the three dyes are identical. They spread over the methoxyphenyl donor moiety, the thiazole and benzene rings as π-bonding orbitals. The LUMOs are shaped up by the nature of the acceptor moieties. The LUMOs of the A, B and C dyes extend over the indandione, malononitrile and dicyanovinylindanone acceptor moieties, respectively, as π-antibonding orbitals. The HOMO-LUMO splittings showed that Dye C is much more reactive than dyes A and B. Compared to dyes A and B, Dye C yielded a longer maximum absorption wavelength because of the stabilization of its LUMOs relative to those of the other two. The three dyes show solvatochromism accompanied by significant increases in hyperpolarizability. The enhancement of the total hyperpolarizability of C compared to those of A and B is due to the cumulative action of the long π-conjugation of the indanone ring and the stronger electron-withdrawing ability of the dicyanovinyl moiety that form the dicyanovinylindanone acceptor group. These findings are facilitated by a natural bond orbital (NBO) technique. The very high total hyperpolarizabilities of the three dyes define their potent nonlinear optical (NLO) behaviour.


Assuntos
Compostos Azo/química , Corantes/química , Tiazóis/química , Algoritmos , Modelos Químicos , Modelos Moleculares , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade
7.
Int J Mol Sci ; 17(11)2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27854244

RESUMO

The gas-phase thermal tautomerization reaction between 2-hydroxypyridine (2-HPY) and 2-pyridone (2-PY) was investigated by applying 6-311++G** and aug-cc-pvdz basis sets incorporated into some density functional theory (DFT) and coupled cluster with singles and doubles (CCSD) methods. The geometrical structures, dipole moments, HOMO-LUMO energy gaps, total hyperpolarizability, kinetics and thermodynamics functions were monitored against the effects of the corrections imposed on these functionals. The small experimental energy difference between the two tautomers of 3.23 kJ/mol; was a real test of the accuracy of the applied levels of theory. M062X and CCSD methods predicted the preference of 2-HPY over 2-PY by 5-9 kJ/mol; while B3LYP functional favoured 2-PY by 1-3 kJ/mol. The CAM-B3LYP and ωB97XD functionals yielded mixed results depending on the basis set used. The source of preference of 2-HPY is the minimal steric hindrance and electrostatic repulsion that subdued the huge hyperconjugation in 2-PY. A 1,3-proton shift intramolecular gas-phase tautomerization yielded a high average activation of 137.152 kJ/mol; while the intermolecular mixed dimer interconversion gave an average barrier height of 30.844 kJ/mol. These findings are boosted by a natural bond orbital (NBO) technique. The low total hyperpolarizabilities of both tautomers mark out their poor nonlinear optical (NLO) behaviour. The enhancement of the total hyperpolarizability of 2-HPY over that of 2-PY is interpreted by the bond length alternation.


Assuntos
Piridonas/química , Isomerismo , Cinética , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Termodinâmica
8.
PLoS One ; 11(9): e0161613, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27631371

RESUMO

Novel heterocyclic azomethine dyes were prepared by the reaction of anthracene-9-carbaldehyde with different heterocyclic amines under microwave irradiation. Structures of the azomethine dyes were confirmed by the elemental analysis, mass spectrometry and several spectroscopic techniques. We studied absorbance and fluorescence spectra of the azomethine dyes in various solvents. They are found to be good absorbers and emitters. We also report photophysical properties like, extinction coefficient, oscillator strength, stokes shift and transition dipole moment. This reflects physicochemical behaviors of synthesized dyes. In addition, their intramolecular charge transfer and nonlinear optical properties, supported by natural bond orbital technique, were also studied computationally by density functional theory. The negative nonlinear refractive index and nonlinear absorption coefficient were measured for these dyes using the closed and open aperture Z-scan technique with a continuous wave helium-neon laser. These are found to vary linearly with solution concentration.


Assuntos
Compostos Azo/química , Corantes/química , Tiossemicarbazonas/química , Modelos Teóricos , Óptica e Fotônica , Espectrometria de Fluorescência
9.
J Fluoresc ; 26(5): 1895-904, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27476069

RESUMO

A new macromolecule pyrimido[l,2-a]benzimidazole derivative named 1,4-bis(2-(2-phenylpyrimido[1,2-a]benzimidazol-4-yl)phenoxy)butan (BPPB) has been synthesized in accepted yield using microwave assistance. The new compound BPPB has been formed by the interaction of 3,3'-((butane-1,4-diylbis(oxy))bis(2,1-phenylene))bis(1-phenylprop-2-en-1-one) (3) with 2- aminobenzimidazole (4) in the presence of potassium hydroxide as a basic catalyst in dimethylformamide (DMF) under microwave radiation for 20 min. The chemical structure of this novel compound was elucidated by elemental and spectral techniques including: FT-IR, (1)H-NMR, (13)C-NMR and mass spectra. The electronic absorption and emission spectra of BPPB were measured in different solvents. BPPB displayed a solvatochromic effect of the emission spectrum that is reflected by red shifts of its fluorescence emission maxima on increasing the solvent polarity, indicating a change of electronic charge distribution upon excitation. BPPB crystalline solids gave excimer-like emission at 535 nm with a bandwidth of ca. 60 nm. Ground and excited states electronic geometry optimizations using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively, complemented these spectral findings. The intramolecular charge transfer was investigated by natural bond orbital (NBO) technique.

10.
J Fluoresc ; 26(4): 1199-209, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27079457

RESUMO

E,E-2,5-bis[2-(3-pyridyl)ethenyl]pyrazine (BPEP) has been prepared by aldol condensation between 2,5-dimethylpyrazine and pyridine-3-carboxaldehyde. It is characterized by IR, (1)H NMR, and (13)C NMR. The electronic absorption and emission properties of BPEP were studied in different solvents. BPEP displays a slight solvatochromic effect of the absorption and emission spectrum, indicating a small change in dipole moment of BPEP upon excitation. The dye solutions (1 × 10(-4) M) in CHCl3, EtOH and dioxane give laser emission in blue region upon excitation by a 337.1 nm nitrogen pulse (λ = 337 nm). The tuning range, gain coefficient (α) and emission cross - section (σe) have been determined. Ground and excited states electronic geometric optimizations were performed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively. A DFT natural bond analysis complemented the ICT. The simulated maximum absorption and emission wavelengths are in line the observed ones in trend, and are proportionally red-shifted with the increase of the solvent polarity. The stability, hardness and electrophilicity of BPEP in different solvents were correlated with the polarity of the elected solvents. BPEP dye displays fluorescence quenching by colloidal silver nanoparticles (AgNPs). The fluorescence data reveal that radiative and non-radiative energy transfer play a major role in the fluorescence quenching mechanism.

11.
Int J Mol Sci ; 16(11): 26347-62, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26556336

RESUMO

The gas-phase thermal tautomerization reaction between imidazole-4-acetic (I) and imidazole-5-acetic (II) acids was monitored using the traditional hybrid functional (B3LYP) and the long-range corrected functionals (CAM-B3LYP and ωB97XD) with 6-311++G** and aug-cc-pvdz basis sets. The roles of the long-range and dispersion corrections on their geometrical parameters, thermodynamic functions, kinetics, dipole moments, Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital (HOMO-LUMO) energy gaps and total hyperpolarizability were investigated. All tested levels of theory predicted the preference of I over II by 0.750-0.877 kcal/mol. The origin of predilection of I is assigned to the H-bonding interaction (nN8→σ*O14-H15). This interaction stabilized I by 15.07 kcal/mol. The gas-phase interconversion between the two tautomers assumed a 1,2-proton shift mechanism, with two transition states (TS), TS1 and TS2, having energy barriers of 47.67-49.92 and 49.55-52.69 kcal/mol, respectively, and an sp³-type intermediate. A water-assisted 1,3-proton shift route brought the barrier height down to less than 20 kcal/mol in gas-phase and less than 12 kcal/mol in solution. The relatively high values of total hyperpolarizability of I compared to II were interpreted and discussed.


Assuntos
Acetatos/química , Imidazóis/química , Modelos Teóricos , Termodinâmica , Ligação de Hidrogênio , Modelos Químicos , Modelos Moleculares
12.
J Fluoresc ; 25(5): 1303-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26210790

RESUMO

The photophysical parameters such as electronic absorption spectra, molar absorptivity(ε), fluorescence spectra and fluorescence quantum yield (φf) of a new dye namely 2,7-diacetyl-9-((dimethylamino)methylene)-9H-fluorene (DMMF) were determined in different solvents. The electronic absorption are less sensitive to medium polarity. A bathochromic shift was observed in emission spectra(ca. 50 nm) upon increase of solvent polarity, which indicates that the singlet excited state (S1) of DMMF is more polar than the singlet ground state (So). Solid crystals of DMMF exhibit intense yellow fluorescence maximum at 550 nm with bandwidth equal 64 nm upon excitation at wavelength 365 nm. The change in dipole moment value (Δµ) was calculated by using the variation of Stokes shift with solvent polarizability (Δf) (Lippert - Mataga plot) and was found to be 7.22 and 5.5 Debye for higher and lower energy of So - S1 (π-π*) H-1 → L and So - S1 (π-π*) H → L, respectively. These results show that, the excited state is more polar than the ground state. The net photochemical quantum yields of photodecomposition of DMMF (φc) were calculated as 7.2 × 10(-5), 1.14 × 10(-4), 1.44 × 10(-4) and 2.11 × 10(-4) in different solvents such as MeOH, CH2Cl2, CHCl3 and CCl4, respectively. DFT/TD-DFT methods were used to study the geometric and electronic structures of DMMF in different solvents. A good agreement was found between the experimental and theoretical results.

13.
Inorg Chem ; 54(15): 7142-4, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26192323

RESUMO

Solvent-assisted linker exchange (SALE) has recently emerged as an attractive strategy for the synthesis of metal-organic frameworks (MOFs) that are unobtainable via traditional synthetic pathways. Herein we present the first example of selective SALE in which only the benzimiadazolate-containing linkers in a series of mixed-linker zeolitic imidazolate frameworks (ZIF-69, -78, and -76) are replaced. The resultant materials (SALEM-10, SALEM-10b, and SALEM-11, respectively) are isostructural to the parent framework and in each case contain trifluoromethyl moieties. We therefore evaluated each of these materials for their hydrophobicity in condensed and gas phases. We expect that selective SALE will significantly facilitate the design of improved, and potentially complex, MOF materials with new and unusual properties.

14.
Int J Mol Sci ; 16(4): 6783-800, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25815595

RESUMO

The present study aims at a fundamental understanding of bonding characteristics of the C-Br and O-Br bonds. The target molecular systems are the isomeric CH3OBr/BrCH2OH system and their decomposition products. Calculations of geometries and frequencies at different density functional theory (DFT) and Hartree-Fock/Møller-Plesset (HF/MP2) levels have been performed. Results have been assessed and evaluated against those obtained at the coupled cluster single-double (Triplet) (CCSD(T)) level of theory. The characteristics of the C-Br and O-Br bonds have been identified via analysis of the electrostatic potential, natural bond orbital (NBO), and quantum theory of atoms in molecules (QTAIM). Analysis of the electrostatic potential (ESP) maps enabled the quantitative characterization of the Br σ-holes. Its magnitude seems very sensitive to the environment and the charge accumulated in the adjacent centers. Some quantum topological parameters, namely Ñ2ρ, ellipticity at bond critical points and the Laplacian bond order, were computed and discussed. The potential energy function for internal rotation has been computed and Fourier transformed to characterize the conformational preferences and origin of the barriers. NBO energetic components for rotation about the C-Br and O-Br bonds as a function of torsion angle have been computed and displayed.


Assuntos
Bromo/química , Teoria Quântica , Ozônio Estratosférico/química , Ligação de Hidrogênio , Isomerismo , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Eletricidade Estática
15.
J Phys Chem B ; 119(3): 1202-12, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25178434

RESUMO

Long-range corrected hybrid density functionals (LC-DFT), with range separation parameters optimally tuned to obey Koopmans' theorem, are used to calculate the first-order hyperpolarizabilities of prototypical charge-transfer compounds p-nitroaniline (PNA) and dimethylamino nitrostilbene (DANS) in the gas phase and various solvents. It is shown that LC-DFT methods with default range separation parameters tend to underestimate hyperpolarizabilities (most notably in solution) and that the tuning scheme can sharply improve results, especially in the cases when the standard LC-DFT errors are largest. Nonetheless, we also identify pathological cases (two pyrrole derivatives) for which LC-DFT underestimates the hyperpolarizabilities, regardless of tuning. It is noted that such pathological cases do not follow the usual inverse relation between the hyperpolarizability and amount of exact exchange, and thus this behavior may serve as a diagnostic tool for the adequacy of LC-DFT.

16.
J Phys Chem A ; 118(46): 10934-43, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25384033

RESUMO

The gas-phase FTIR study of the pyrolysis products of iminodiacetonitrile, (N≡CCH2)2NH has revealed the existence of C-cyanomethanimine, N≡CCH═NH, and ketenimine, CH2═C═NH. The former has two isomers: Z and E; while the later readily taumerizes to acetonitrile, CH3C≡N. A trapping/revaporization system has been used to purify C-cyanomethanimine. The analysis of the rotational structures of the IR medium resolution C-type CNH bend, ν6, and C═N torsional mode, ν10, has led to a conformational characterization of these isomers. The Z-isomer was shown to be the major product. This conjecture was supported by ab initio MO calculations that confirmed the relative total energy stability of the Z-isomer over its E-counterpart by 0.173 to 2.326 kJ/mol. The K values indicated that the equilibrium concentration of Z-C-cyanomethanimine amounts to up to three times that of E-C-cyanomethanimine. A further investigation using NBO technique proved the predilection of the Z-isomer. In addition it relates its provenance of preference to the remote nN6 → σ*C4-N5 interaction that stabilized it by 1.10 kcal/mol. A thorough theoretical investigation of the tautomerization reaction between ketenimine and acetonitrile will be published in a separate contribution.

17.
Int J Mol Sci ; 15(6): 11064-81, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24950178

RESUMO

MP2, DFT and CCSD methods with 6-311++G** and aug-cc-pvdz basis sets have been used to probe the structural changes and relative energies of E-prop-2-ynylideneamine (I), Z-prop-2-ynylideneamine (II), prop-1,2-diene-1-imine (III) and vinyl cyanide (IV). The energy near-equivalence and provenance of preference of isomers and tautomers were investigated by NBO calculations using HF and B3LYP methods with 6-311++G** and aug-cc-pvdz basis sets. All substrates have Cs symmetry. The optimized geometries were found to be mainly theoretical method dependent. All elected levels of theory have computed I/II total energy of isomerization (ΔE) of 1.707 to 3.707 kJ/mol in favour of II at 298.15 K. MP2 and CCSD methods have indicated clearly the preference of II over III; while the B3LYP functional predicted nearly similar total energies. All tested levels of theory yielded a global II/IV tautomerization total energy (ΔE) of 137.3-148.4 kJ/mol in support of IV at 298.15 K. The negative values of ΔS indicated that IV is favoured at low temperature. At high temperature, a reverse tautomerization becomes spontaneous and II is preferred. The existence of II in space was debated through the interpretation and analysis of the thermodynamic and kinetic studies of this tautomerization reaction and the presence of similar compounds in the Interstellar Medium (ISM).


Assuntos
Alcinos/química , Aminas/química , Iminas/química , Modelos Químicos , Isomerismo , Cinética , Conformação Molecular , Termodinâmica
18.
J Mol Model ; 20(3): 2078, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24562851

RESUMO

The FTIR spectra of a series of 1H- and 2H- 1,2,3- and 1,2,4- triazoles and benzotriazoles were measured in the solid state. Assignments of the observed bands were facilitated by computation of the spectra using the density functional B3LYP method with the 6-311++G** basis set. The theoretical spectra show very good agreement with experiment. Rigorous normal coordinate analyses have been performed, and detailed vibrational assignment has been made on the basis of the calculated potential energy distributions. Several ambiguities and contradictions in the previously reported vibrational assignments have been clarified. "Marker bands" characterize the triazole ring were identified. The effect of substituents, the nature of the characteristic "marker bands" and quenching of intensities of some bands are discussed. Comparison of the topology of the charge density distribution, and the electric response properties of the 1H-, and 2H- isomers of both 1,2,3- and 1,2,4 triazole have been made using the quantum theory of atoms-in-molecules (QTAIM) by calculating the Laplacian of the electron density (∇²ρ(r)). Analysis of the contour plots and relief maps of ∇²ρ(r) reveals that 1,2,3- and 1,2,4-triazoles show completely different topological features for the distribution of the electron density. Thus, while the 1,2,3-isomer is a very polar molecule, the 1,2,4-isomer is much more polarizable. Bonding characteristics show also different features. This would thus underlie the different features of their vibrational spectra. The reported vibrational assignment can be used for further spectroscopic studies of new drugs and biological compounds containing the triazole ring.


Assuntos
Modelos Químicos , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Triazóis/química , Transporte de Elétrons , Elétrons , Isomerismo , Estrutura Molecular , Teoria Quântica , Vibração
19.
Sci Technol Adv Mater ; 15(4): 044202, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877697

RESUMO

We present the results of density functional theory (DFT) calculations on magnetite, Fe3O4, which has been recently considered as electrode in the emerging field of organic spintronics. Given the nature of the potential applications, we evaluated the magnetite room-temperature cubic [Formula: see text] phase in terms of structural, electronic, and magnetic properties. We considered GGA (PBE), GGA + U (PBE + U), and range-separated hybrid (HSE06 and HSE(15%)) functionals. Calculations using HSE06 and HSE(15%) functionals underline the impact that inclusion of exact exchange has on the electronic structure. While the modulation of the band gap with exact exchange has been seen in numerous situations, the dramatic change in the valence band nature and states near the Fermi level has major implications for even a qualitative interpretation of the DFT results. We find that HSE06 leads to highly localized states below the Fermi level while HSE(15%) and PBE + U result in delocalized states around the Fermi level. The significant differences in local magnetic moments and atomic charges indicate that describing room-temperature bulk materials, surfaces and interfaces may require different functionals than their low-temperature counterparts.

20.
Int J Mol Sci ; 13(11): 15360-72, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23203130

RESUMO

The MP2 and DFT/B3LYP methods at 6-311++G(d,p) and aug-cc-pdz basis sets have been used to probe the origin of relative stability preference for eclipsed acetaldehyde over its bisected counterpart. A relative energy stability range of 1.02 to 1.20 kcal/mol, in favor of the eclipsed conformer, was found and discussed. An NBO study at these chemistry levels complemented these findings and assigned the eclipsed acetaldehyde preference mainly to the vicinal antiperiplanar hyperconjugative interactions. The tautomeric interconversion between the more stable eclipsed acetaldehyde and vinyl alcohol has been achieved through a four-membered ring transition state (TS). The obtained barrier heights and relative stabilities of eclipsed acetaldehyde and the two conformers of vinyl alchol at these model chemistries have been estimated and discussed.


Assuntos
Acetaldeído/química , Álcoois/química , Álcoois/síntese química , Modelos Químicos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA