Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(6): e3002153, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37348048

RESUMO

Our current understanding of early human development is limited. A study in PLOS Biology found a previously undefined group of cells that diverges from the main lineages and undergo apoptosis through the activity of young transposable elements.


Assuntos
Blastocisto , Elementos de DNA Transponíveis , Humanos , Elementos de DNA Transponíveis/genética , Embrião de Mamíferos
2.
Nat Commun ; 14(1): 405, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697417

RESUMO

Stem cells undergo cellular division during their differentiation to produce daughter cells with a new cellular identity. However, the epigenetic events and molecular mechanisms occurring between consecutive cell divisions have been insufficiently studied due to technical limitations. Here, using the FUCCI reporter we developed a cell-cycle synchronised human pluripotent stem cell (hPSC) differentiation system for uncovering epigenome and transcriptome dynamics during the first two divisions leading to definitive endoderm. We observed that transcription of key differentiation markers occurs before cell division, while chromatin accessibility analyses revealed the early inhibition of alternative cell fates. We found that Activator protein-1 members controlled by p38/MAPK signalling are necessary for inducing endoderm while blocking cell fate shifting toward mesoderm, and that enhancers are rapidly established and decommissioned between different cell divisions. Our study has practical biomedical utility for producing hPSC-derived patient-specific cell types since p38/MAPK induction increased the differentiation efficiency of insulin-producing pancreatic beta-cells.


Assuntos
Células-Tronco Pluripotentes , Humanos , Diferenciação Celular/genética , Regulação da Expressão Gênica , Antígenos de Diferenciação/metabolismo , Epigênese Genética , Endoderma
3.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429078

RESUMO

Over 80% of patients with pancreatic ductal adenocarcinoma (PDAC) are diagnosed at a late stage and are locally advanced or with concurrent metastases. The aggressive phenotype and relative chemo- and radiotherapeutic resistance of PDAC is thought to be mediated largely by its prominent stroma, which is supported by an extracellular matrix (ECM). Therefore, we investigated the impact of tissue-matched human ECM in driving PDAC and the role of the ECM in promoting chemotherapy resistance. Decellularized human pancreata and livers were recellularized with PANC-1 and MIA PaCa-2 (PDAC cell lines), as well as PK-1 cells (liver-derived metastatic PDAC cell line). PANC-1 cells migrated into the pancreatic scaffolds, MIA PaCa-2 cells were able to migrate into both scaffolds, whereas PK-1 cells were able to migrate into the liver scaffolds only. These differences were supported by significant deregulations in gene and protein expression between the pancreas scaffolds, liver scaffolds, and 2D culture. Moreover, these cell lines were significantly more resistant to gemcitabine and doxorubicin chemotherapy treatments in the 3D models compared to 2D cultures, even after confirmed uptake by confocal microscopy. These results suggest that tissue-specific ECM provides the preserved native cues for primary and metastatic PDAC cells necessary for a more reliable in vitro cell culture.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Pâncreas/patologia , Matriz Extracelular/metabolismo , Adenocarcinoma/metabolismo , Neoplasias Pancreáticas
4.
Elife ; 102021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34463252

RESUMO

The signalling pathways that maintain primed human pluripotent stem cells (hPSCs) have been well characterised, revealing a critical role for TGFß/Activin/Nodal signalling. In contrast, the signalling requirements of naive human pluripotency have not been fully established. Here, we demonstrate that TGFß signalling is required to maintain naive hPSCs. The downstream effector proteins - SMAD2/3 - bind common sites in naive and primed hPSCs, including shared pluripotency genes. In naive hPSCs, SMAD2/3 additionally bind to active regulatory regions near to naive pluripotency genes. Inhibiting TGFß signalling in naive hPSCs causes the downregulation of SMAD2/3-target genes and pluripotency exit. Single-cell analyses reveal that naive and primed hPSCs follow different transcriptional trajectories after inhibition of TGFß signalling. Primed hPSCs differentiate into neuroectoderm cells, whereas naive hPSCs transition into trophectoderm. These results establish that there is a continuum for TGFß pathway function in human pluripotency spanning a developmental window from naive to primed states.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes/fisiologia , Transdução de Sinais/fisiologia , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta/genética , Linhagem Celular , Reprogramação Celular , Humanos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Science ; 371(6531): 839-846, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602855

RESUMO

Organoid technology holds great promise for regenerative medicine but has not yet been applied to humans. We address this challenge using cholangiocyte organoids in the context of cholangiopathies, which represent a key reason for liver transplantation. Using single-cell RNA sequencing, we show that primary human cholangiocytes display transcriptional diversity that is lost in organoid culture. However, cholangiocyte organoids remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. We then utilize a model of cell engraftment in human livers undergoing ex vivo normothermic perfusion to demonstrate that this property allows extrahepatic organoids to repair human intrahepatic ducts after transplantation. Our results provide proof of principle that cholangiocyte organoids can be used to repair human biliary epithelium.


Assuntos
Doenças dos Ductos Biliares/terapia , Ductos Biliares Intra-Hepáticos/fisiologia , Ductos Biliares/citologia , Terapia Baseada em Transplante de Células e Tecidos , Células Epiteliais/citologia , Organoides/transplante , Animais , Bile , Ductos Biliares/fisiologia , Ductos Biliares Intra-Hepáticos/citologia , Ducto Colédoco/citologia , Células Epiteliais/fisiologia , Vesícula Biliar/citologia , Regulação da Expressão Gênica , Humanos , Fígado/fisiologia , Transplante de Fígado , Transplante de Células-Tronco Mesenquimais , Camundongos , Organoides/fisiologia , RNA-Seq , Obtenção de Tecidos e Órgãos , Transcriptoma
6.
Cell Stem Cell ; 27(3): 470-481.e6, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32795399

RESUMO

Variability among pluripotent stem cell (PSC) lines is a prevailing issue that hampers not only experimental reproducibility but also large-scale applications and personalized cell-based therapy. This variability could result from epigenetic and genetic factors that influence stem cell behavior. Naive culture conditions minimize epigenetic fluctuation, potentially overcoming differences in PSC line differentiation potential. Here we derived PSCs from distinct mouse strains under naive conditions and show that lines from distinct genetic backgrounds have divergent differentiation capacity, confirming a major role for genetics in PSC phenotypic variability. This is explained in part through inconsistent activity of extra-cellular signaling, including the Wnt pathway, which is modulated by specific genetic variants. Overall, this study shows that genetic background plays a dominant role in driving phenotypic variability of PSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Variação Biológica da População , Diferenciação Celular/genética , Variação Genética , Camundongos , Reprodutibilidade dos Testes
7.
J Biol Chem ; 294(47): 17903-17914, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31515269

RESUMO

The mesoderm is one of the three germ layers produced during gastrulation from which muscle, bones, kidneys, and the cardiovascular system originate. Understanding the mechanisms that control mesoderm specification could inform many applications, including the development of regenerative medicine therapies to manage diseases affecting these tissues. Here, we used human pluripotent stem cells to investigate the role of cell cycle in mesoderm formation. To this end, using small molecules or conditional gene knockdown, we inhibited proteins controlling G1 and G2/M cell cycle phases during the differentiation of human pluripotent stem cells into lateral plate, cardiac, and presomitic mesoderm. These loss-of-function experiments revealed that regulators of the G1 phase, such as cyclin-dependent kinases and pRb (retinoblastoma protein), are necessary for efficient mesoderm formation in a context-dependent manner. Further investigations disclosed that inhibition of the G2/M regulator cyclin-dependent kinase 1 decreases BMP (bone morphogenetic protein) signaling activity specifically during lateral plate mesoderm formation while reducing fibroblast growth factor/extracellular signaling-regulated kinase 1/2 activity in all mesoderm subtypes. Taken together, our findings reveal that cell cycle regulators direct mesoderm formation by controlling the activity of key developmental pathways.


Assuntos
Ciclo Celular , Diferenciação Celular , Quinases Ciclina-Dependentes/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Mesoderma/citologia , Linhagem da Célula , Quinases Ciclina-Dependentes/antagonistas & inibidores , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Mesoderma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Stem Cell Reports ; 12(1): 165-179, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30595546

RESUMO

Cell cycle progression and cell fate decisions are closely linked in human pluripotent stem cells (hPSCs). However, the study of these interplays at the molecular level remains challenging due to the lack of efficient methods allowing cell cycle synchronization of large quantities of cells. Here, we screened inhibitors of cell cycle progression and identified nocodazole as the most efficient small molecule to synchronize hPSCs in the G2/M phase. Following nocodazole treatment, hPSCs remain pluripotent, retain a normal karyotype and can successfully differentiate into the three germ layers and functional cell types. Moreover, genome-wide transcriptomic analyses on single cells synchronized for their cell cycle and differentiated toward the endoderm lineage validated our findings and showed that nocodazole treatment has no effect on gene expression during the differentiation process. Thus, our synchronization method provides a robust approach to study cell cycle mechanisms in hPSCs.


Assuntos
Ciclo Celular , Técnicas de Reprogramação Celular/métodos , Células-Tronco Embrionárias Humanas/citologia , Diferenciação Celular , Linhagem Celular , Endoderma/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Cariótipo , Nocodazol/farmacologia , Transcriptoma , Moduladores de Tubulina/farmacologia
9.
Nature ; 555(7695): 256-259, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29489750

RESUMO

The TGFß pathway has essential roles in embryonic development, organ homeostasis, tissue repair and disease. These diverse effects are mediated through the intracellular effectors SMAD2 and SMAD3 (hereafter SMAD2/3), whose canonical function is to control the activity of target genes by interacting with transcriptional regulators. Therefore, a complete description of the factors that interact with SMAD2/3 in a given cell type would have broad implications for many areas of cell biology. Here we describe the interactome of SMAD2/3 in human pluripotent stem cells. This analysis reveals that SMAD2/3 is involved in multiple molecular processes in addition to its role in transcription. In particular, we identify a functional interaction with the METTL3-METTL14-WTAP complex, which mediates the conversion of adenosine to N6-methyladenosine (m6A) on RNA. We show that SMAD2/3 promotes binding of the m6A methyltransferase complex to a subset of transcripts involved in early cell fate decisions. This mechanism destabilizes specific SMAD2/3 transcriptional targets, including the pluripotency factor gene NANOG, priming them for rapid downregulation upon differentiation to enable timely exit from pluripotency. Collectively, these findings reveal the mechanism by which extracellular signalling can induce rapid cellular responses through regulation of the epitranscriptome. These aspects of TGFß signalling could have far-reaching implications in many other cell types and in diseases such as cancer.


Assuntos
Adenosina/análogos & derivados , Diferenciação Celular/genética , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ativinas/metabolismo , Adenosina/metabolismo , Animais , Proteínas de Ciclo Celular , Epigênese Genética , Humanos , Metilação , Metiltransferases/química , Metiltransferases/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteína Homeobox Nanog/metabolismo , Proteína Nodal/metabolismo , Proteínas Nucleares/metabolismo , Células-Tronco Pluripotentes/citologia , Ligação Proteica , Fatores de Processamento de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , Transdução de Sinais , Transcriptoma
10.
J Biotechnol ; 184: 100-2, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-24858679

RESUMO

Deletion of pathways for carbon-storage in the cyanobacterium Synechocystis sp. PCC6803 has been suggested as a strategy to increase the size of the available pyruvate pool for the production of (heterologous) chemical commodities. Here we show that deletion of the pathway for glycogen synthesis leads to a twofold increased lactate production rate, under nitrogen-limited conditions, whereas impairment of polyhydroxybutyrate synthesis does not.


Assuntos
Glicogênio/biossíntese , Hidroxibutiratos/metabolismo , Ácido Láctico/metabolismo , Fotossíntese/genética , Sequestro de Carbono/genética , Glicogênio/genética , Engenharia Metabólica , Mutação , Nitrogênio/metabolismo , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Synechocystis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA