RESUMO
RESUMEN Objetivo Se ilustra el proceso de transmisión de una enfermedad, entendido como un sistema complejo a la luz de la teoría de la complejidad. Métodos Se simula el comportamiento de un modelo matemático SEIR que refleja el proceso de transmisión de una enfermedad a partir de la conexión de los estados de susceptibilidad, infección, enfermedad y recuperación y no linealidad en la interacción de susceptibles e infectados. Se asume una tasa de infección con oscilaciones en el tiempo, descrito por un mapeo logístico. Resultados La transmisión transcurre en el tiempo con la reducción de los susceptibles en la medida que estos se infectan y enferman y el aumento de la recuperación tras el diagnóstico y tratamiento. Con pequeños aumentos en el valor de la tasa de infección, se observan oscilaciones en el número de susceptibles y expuestos y aleatoriedad en la relación entre los susceptibles e infectados, hasta confluir a un patrón regular. Conclusión El modelo refleja la conexión entre los estados, la no linealidad y el comportamiento caótico tras pequeños aumentos del valor de la tasa de infección. Una perspectiva histórica y transdisciplinaria ayudaría a comprender la complejidad de la transmisión y a concertar opciones de control.
ABSTRACT Objective Illustrating disease transmission as a complex system according to complexity theory. Methods A SIR mathematical model (S=number susceptible, I=number infectious, and R=number recovered or immune) reflecting disease transmission from the connection between states of susceptibility, infection, disease, recovery and nonlinearity in the interaction between susceptible and infected was simulated. Infection rate temporal fluctuations were described by logistic mapping. Results Transmission occurs with the reduction of susceptible states as people become infected and sick, followed by an increase in individuals' recovery following diagnosis and treatment. Small increases in infection rate value led to fluctuations in the number of susceptible and exposed people and randomness in the relationship between being susceptible and infected, until converging towards a regular pattern. Conclusion The model reflected the connection between states of susceptibility, nonlinearity and chaotic behavior following small increases in infection rate. A historical and trans-disciplinary perspective could help in understanding transmission complexity and coordinating control options.
Assuntos
Humanos , Transmissão de Doença Infecciosa/estatística & dados numéricos , Modelos TeóricosRESUMO
OBJECTIVE: Illustrating disease transmission as a complex system according to complexity theory. METHODS: A SIR mathematical model (S=number susceptible, I=number infectious, and R=number recovered or immune) reflecting disease transmission from the connection between states of susceptibility, infection, disease, recovery and nonlinearity in the interaction between susceptible and infected was simulated. Infection rate temporal fluctuations were described by logistic mapping. RESULTS: Transmission occurs with the reduction of susceptible states as people become infected and sick, followed by an increase in individuals' recovery following diagnosis and treatment. Small increases in infection rate value led to fluctuations in the number of susceptible and exposed people and randomness in the relationship between being susceptible and infected, until converging towards a regular pattern. CONCLUSION: The model reflected the connection between states of susceptibility, nonlinearity and chaotic behavior following small increases in infection rate. A historical and trans-disciplinary perspective could help in understanding transmission complexity and coordinating control options.