Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891357

RESUMO

There is still a need to investigate the relationships between glycophytes and halophytes and the many biotic and abiotic factors in their natural environments. Therefore, we study the effects of the type of environment on the ecophysiological responses and condition of the glycophyte Elder Sambucus nigra L., the macrophyte Common Reed Phragmites australis (Cav.) Trin. ex Steud., the facultative halophyte Weeping Alkaligrass Puccinellia distans (Jacq.) Parl, and the obligate halophyte Common Glasswort Salicornia europaea L. in a saline-disturbed anthropogenic region of central Poland. We analyzed the effects of salinity, acidity, and soil organic matter on shoot length, lipoperoxidation, and proline in roots and green parts, and evaluated plant responses to environmental disturbance, which allowed for the comparison of adaptation strategies. The studies were carried out in (1) "sodium production" (near sodium factories), (2) "anthropogenic environments" (waste dumps, agroecosystems, calcium deposits, post-production tanks), (3) "wetland environments" (near river channels and riparian areas), and (4) "control" (natural, unpolluted environments). Green parts of plants are better suited to indicate environmental stress than roots. Their higher structural MDA membrane damage is related to the transport of toxic ions to the shoots by a rapid transpiration stream in the xylem. We found high salinity to be the main factor inducing growth and found it to be correlated with the high pH effect on proline increase in glycophytes (Elder, Reed) and Weeping Alkaligrass, in contrast to Common Glasswort. We suggest that proline accumulation allows osmotic adjustment in the green parts of reeds and alkaligrasses, but may have another function (in Elder). Common Glasswort accumulates large amounts of Na+, which is energetically more effective than proline accumulation for osmotic adjustment. Organic matter affects plant growth and proline levels, but soil salinity and pH alter nutrient availability. Plant distribution along the salinity gradient indicates that Elder is the most salt-sensitive species compared to Reed, Alkaligrass, and Glasswort. Salinity and the lack of control of thick reeds, which compete with other plant groups, affect the distribution of halophytes in saline environments.

2.
Ecotoxicol Environ Saf ; 78: 195-205, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22169892

RESUMO

The aim of this study was to prove whether anthropogenic pollution affects antioxidant defense mechanisms such as superoxide dismutase (SOD) and catalase (CAT) activity, ferritin (FRT) concentration and total antioxidant status (TAS) in human serum. The study area involves polluted and salted environment (Kujawy region; northern-middle Poland) and Tuchola Forestry (unpolluted control area). We investigated 79 blood samples of volunteers from polluted area and 82 from the control in 2008 and 2009. Lead, cadmium and iron concentrations were measured in whole blood by the ICP-MS method. SOD and CAT activities were measured in serum using SOD and CAT Assay Kits by the standardized colorimetric method. Serum TAS was measured spectrophotometrically by the modified Benzie and Strain (1996) method and FRT concentration-by the immunonefelometric method. Pb and Cd levels and SOD activity were higher in volunteers from polluted area as compared with those from the control (0.0236 mg l(-1) vs. 0.014 mg l(-1); 0.0008 mg l(-1) vs. 0.0005 mg l(-1); 0.137 Um l(-1) vs. 0.055 Um l(-1), respectively). Fe level, CAT activity and TAS were lower in serum of volunteers from polluted area (0.442 g l(-1) vs. 0.476 gl(-1); 3.336 nmol min(-1)ml(-1) vs. 6.017 nmol min(-1)ml(-1); 0.731 Trolox-equivalents vs. 0.936 Trolox-equivalents, respectively), whilst differences in FRT concentration were not significant (66.109 µg l(-1) vs. 37.667 µg l(-1), p=0.3972). Positive correlations between Pb (r=0.206), Cd (r=0.602) and SOD in the inhabitants of polluted area, and between Cd and SOD in the control (r=0.639) were shown. In volunteers from both studied environments TAS-FRT (polluted: r=0.625 vs. control: r=0.837) and Fe-FRT (polluted area: r=0.831 vs. control: r=0.407) correlations, and Pb-FRT (r=0.360) and Pb-TAS (r=0.283) in the control were stated. The higher lead and cadmium concentrations in blood cause an increase of SOD activity. It suggests that this is one of the defense mechanisms of an organism against oxidative stress caused by environmental factors, whilst non-enzymatic mechanisms marked by TAS are the main antioxidant defense system in relation with Pb concentration in humans from unpolluted area. Simultaneously, the higher CAT activity and TAS can indicate that these mechanisms play a key role in the antioxidant protection in non-stressed environments.


Assuntos
Poluentes Ambientais/toxicidade , Metais Pesados/toxicidade , Adulto , Catalase/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Estresse Oxidativo , Polônia , Superóxido Dismutase/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA