Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
medRxiv ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39484266

RESUMO

BACKGROUND: Isolated posterior leaflet mitral valve prolapse (PostMVP), a common form of MVP, often referred as fibroelastic deficiency, is considered a degenerative disease. PostMVP patients are usually asymptomatic and often undiagnosed until chordal rupture. The present study aims to characterize familial PostMVP phenotype and familial recurrence, its genetic background, and the pathophysiological processes involved. METHODS: We prospectively enrolled 284 unrelated MVP probands, of whom 178 (63%) had bi-leaflet MVP and 106 had PostMVP (37%). Familial screening within PostMVP patients allowed the identification of 20 families with inherited forms of PostMVP for whom whole genome sequencing was carried out in probands. Functional in vivo and in vitro investigations were performed in zebrafishand in Hek293T cells. RESULTS: In the 20 families with inherited form of PostMVP, 38.8% of relatives had a MVP/prodromal form, mainly of the posterior leaflet, with transmission consistent with an autosomal dominant mode of inheritance. Compared with control relatives, PostMVP family patients have clear posterior leaflet dystrophy on echocardiography. Patients with PostMVP present a burden of rare genetic variants in ARHGAP24. ARHGAP24 encodes the filamin A binding RhoGTPase-activating protein FilGAP and its silencing in zebrafish leads to atrioventricular regurgitation. In vitro functional studies showed that variants of FilGAP, found in PostMVP families, are loss-of-function variants impairing cellular adhesion and mechano-transduction capacities. CONCLUSIONS: PostMVP should not only be considered an isolated degenerative pathology but as a specific heritable phenotypic trait with genetic and functional pathophysiological origins. The identification of loss-of-function variants in ARHGAP24 further reinforces the pivotal role of mechano-transduction pathways in the pathogenesis of MVP. CLINICAL PERSPECTIVE: Isolated posterior mitral valve prolapse (PostMVP), often called fibro-elastic deficiency MVP, is at least in some patients, a specific inherited phenotypic traitPostMVP has both genetic and functional pathophysiological origins Genetic variants in the ARHGAP24 gene, which encodes for the FilGAP protein, cause progressive Post MVP in familial cases, and impair cell adhesion and mechano-transduction capacities.

2.
Nat Commun ; 15(1): 8750, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384805

RESUMO

Immune checkpoint inhibitors (ICI) have significantly improved overall survival in melanoma patients. However, 60% experience severe adverse events and early response markers are lacking. Circulating tumour DNA (ctDNA) is a promising biomarker for treatment-response and recurrence detection. The prospective PET/LIT study included 104 patients with palliative combined or adjuvant ICI. Tumour-informed sequencing panels to monitor 30 patient-specific variants were designed and 321 liquid biopsies of 87 patients sequenced. Mean sequencing depth after deduplication using UMIs was 6000x and the error rate of UMI-corrected reads was 2.47×10-4. Variant allele fractions correlated with PET/CT MTV (rho=0.69), S100 (rho=0.72), and LDH (rho=0.54). A decrease of allele fractions between T1 and T2 was associated with improved PFS and OS in the palliative cohort (p = 0.008 and p < 0.001). ctDNA was detected in 76.9% of adjuvant patients with relapse (n = 10/13), while all patients without progression (n = 9) remained ctDNA negative. Tumour-informed liquid biopsies are a reliable tool for monitoring treatment response and early relapse in melanoma patients with ICI.


Assuntos
DNA Tumoral Circulante , Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Biópsia Líquida/métodos , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Adulto , Biomarcadores Tumorais/genética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Idoso de 80 Anos ou mais
3.
NPJ Genom Med ; 9(1): 49, 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39461972

RESUMO

We report the results of a comprehensive copy number variant (CNV) reanalysis of 9171 exome sequencing datasets from 5757 families affected by a rare disease (RD). The data reanalysed was extremely heterogeneous, having been generated using 28 different enrichment kits by 42 different research groups across Europe partnering in the Solve-RD project. Each research group had previously undertaken their own analysis of the data but failed to identify disease-causing variants. We applied three CNV calling algorithms to maximise sensitivity, and rare CNVs overlapping genes of interest, provided by four partner European Reference Networks, were taken forward for interpretation by clinical experts. This reanalysis has resulted in a molecular diagnosis being provided to 51 families in this sample, with ClinCNV performing the best of the three algorithms. We also identified partially explanatory pathogenic CNVs in a further 34 individuals. This work illustrates the value of reanalysing ES cold cases for CNVs.

4.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-39302238

RESUMO

The Solve-RD project brings together clinicians, scientists, and patient representatives from 51 institutes spanning 15 countries to collaborate on genetically diagnosing ("solving") rare diseases (RDs). The project aims to significantly increase the diagnostic success rate by co-analyzing data from thousands of RD cases, including phenotypes, pedigrees, exome/genome sequencing, and multiomics data. Here we report on the data infrastructure devised and created to support this co-analysis. This infrastructure enables users to store, find, connect, and analyze data and metadata in a collaborative manner. Pseudonymized phenotypic and raw experimental data are submitted to the RD-Connect Genome-Phenome Analysis Platform and processed through standardized pipelines. Resulting files and novel produced omics data are sent to the European Genome-Phenome Archive, which adds unique file identifiers and provides long-term storage and controlled access services. MOLGENIS "RD3" and Café Variome "Discovery Nexus" connect data and metadata and offer discovery services, and secure cloud-based "Sandboxes" support multiparty data analysis. This successfully deployed and useful infrastructure design provides a blueprint for other projects that need to analyze large amounts of heterogeneous data.


Assuntos
Doenças Raras , Doenças Raras/genética , Humanos , Bases de Dados Genéticas , Fenótipo , Metadados , Biologia Computacional/métodos , Genômica/métodos
5.
medRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38746462

RESUMO

Solve-RD is a pan-European rare disease (RD) research program that aims to identify disease-causing genetic variants in previously undiagnosed RD families. We utilised 10-fold coverage HiFi long-read sequencing (LRS) for detecting causative structural variants (SVs), single nucleotide variants (SNVs), insertion-deletions (InDels), and short tandem repeat (STR) expansions in extensively studied RD families without clear molecular diagnoses. Our cohort includes 293 individuals from 114 genetically undiagnosed RD families selected by European Rare Disease Network (ERN) experts. Of these, 21 families were affected by so-called 'unsolvable' syndromes for which genetic causes remain unknown, and 93 families with at least one individual affected by a rare neurological, neuromuscular, or epilepsy disorder without genetic diagnosis despite extensive prior testing. Clinical interpretation and orthogonal validation of variants in known disease genes yielded thirteen novel genetic diagnoses due to de novo and rare inherited SNVs, InDels, SVs, and STR expansions. In an additional four families, we identified a candidate disease-causing SV affecting several genes including an MCF2 / FGF13 fusion and PSMA3 deletion. However, no common genetic cause was identified in any of the 'unsolvable' syndromes. Taken together, we found (likely) disease-causing genetic variants in 13.0% of previously unsolved families and additional candidate disease-causing SVs in another 4.3% of these families. In conclusion, our results demonstrate the added value of HiFi long-read genome sequencing in undiagnosed rare diseases.

6.
Eur J Hum Genet ; 32(8): 998-1004, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38822122

RESUMO

Structural variants (SVs), including large deletions, duplications, inversions, translocations, and more complex events have the potential to disrupt gene function resulting in rare disease. Nevertheless, current pipelines and clinical decision support systems for exome sequencing (ES) tend to focus on small alterations such as single nucleotide variants (SNVs) and insertions-deletions shorter than 50 base pairs (indels). Additionally, detection and interpretation of large copy-number variants (CNVs) are frequently performed. However, detection of other types of SVs in ES data is hampered by the difficulty of identifying breakpoints in off-target (intergenic or intronic) regions, which makes robust identification of SVs challenging. In this paper, we demonstrate the utility of SV calling in ES resulting in a diagnostic yield of 0.4% (23 out of 5825 probands) for a large cohort of unsolved patients collected by the Solve-RD consortium. Remarkably, 8 out of 23 pathogenic SV were not found by comprehensive read-depth-based CNV analysis, resulting in a 0.13% increased diagnostic value.


Assuntos
Doenças Raras , Humanos , Doenças Raras/genética , Doenças Raras/diagnóstico , Variações do Número de Cópias de DNA , Exoma/genética , Sequenciamento do Exoma , Testes Genéticos/métodos , Testes Genéticos/normas , Variação Estrutural do Genoma
7.
Nat Genet ; 56(6): 1080-1089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684900

RESUMO

Despite linkage to chromosome 16q in 1996, the mutation causing spinocerebellar ataxia type 4 (SCA4), a late-onset sensory and cerebellar ataxia, remained unknown. Here, using long-read single-strand whole-genome sequencing (LR-GS), we identified a heterozygous GGC-repeat expansion in a large Utah pedigree encoding polyglycine (polyG) in zinc finger homeobox protein 3 (ZFHX3), also known as AT-binding transcription factor 1 (ATBF1). We queried 6,495 genome sequencing datasets and identified the repeat expansion in seven additional pedigrees. Ultrarare DNA variants near the repeat expansion indicate a common distant founder event in Sweden. Intranuclear ZFHX3-p62-ubiquitin aggregates were abundant in SCA4 basis pontis neurons. In fibroblasts and induced pluripotent stem cells, the GGC expansion led to increased ZFHX3 protein levels and abnormal autophagy, which were normalized with small interfering RNA-mediated ZFHX3 knockdown in both cell types. Improving autophagy points to a therapeutic avenue for this novel polyG disease. The coding GGC-repeat expansion in an extremely G+C-rich region was not detectable by short-read whole-exome sequencing, which demonstrates the power of LR-GS for variant discovery.


Assuntos
Autofagia , Proteínas de Homeodomínio , Linhagem , Ataxias Espinocerebelares , Expansão das Repetições de Trinucleotídeos , Humanos , Autofagia/genética , Expansão das Repetições de Trinucleotídeos/genética , Proteínas de Homeodomínio/genética , Ataxias Espinocerebelares/genética , Masculino , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo
8.
NPJ Genom Med ; 9(1): 20, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485733

RESUMO

In the era of precision medicine, genome sequencing (GS) has become more affordable and the importance of genomics and multi-omics in clinical care is increasingly being recognized. However, how to scale and effectively implement GS on an institutional level remains a challenge for many. Here, we present Genome First and Ge-Med, two clinical implementation studies focused on identifying the key pillars and processes that are required to make routine GS and predictive genomics a reality in the clinical setting. We describe our experience and lessons learned for a variety of topics including test logistics, patient care processes, data reporting, and infrastructure. Our model of providing clinical care and comprehensive genomic analysis from a single source may be used by other centers with a similar structure to facilitate the implementation of omics-based personalized health concepts in medicine.

9.
Brain ; 147(7): 2471-2482, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386308

RESUMO

Neurodevelopmental disorders are major indications for genetic referral and have been linked to more than 1500 loci including genes encoding transcriptional regulators. The dysfunction of transcription factors often results in characteristic syndromic presentations; however, at least half of these patients lack a genetic diagnosis. The implementation of machine learning approaches has the potential to aid in the identification of new disease genes and delineate associated phenotypes. Next generation sequencing was performed in seven affected individuals with neurodevelopmental delay and dysmorphic features. Clinical characterization included reanalysis of available neuroimaging datasets and 2D portrait image analysis with GestaltMatcher. The functional consequences of ZSCAN10 loss were modelled in mouse embryonic stem cells (mESCs), including a knockout and a representative ZSCAN10 protein truncating variant. These models were characterized by gene expression and western blot analyses, chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) and immunofluorescence staining. Zscan10 knockout mouse embryos were generated and phenotyped. We prioritized bi-allelic ZSCAN10 loss-of-function variants in seven affected individuals from five unrelated families as the underlying molecular cause. RNA-sequencing analyses in Zscan10-/- mESCs indicated dysregulation of genes related to stem cell pluripotency. In addition, we established in mESCs the loss-of-function mechanism for a representative human ZSCAN10 protein truncating variant by showing alteration of its expression levels and subcellular localization, interfering with its binding to DNA enhancer targets. Deep phenotyping revealed global developmental delay, facial asymmetry and malformations of the outer ear as consistent clinical features. Cerebral MRI showed dysplasia of the semicircular canals as an anatomical correlate of sensorineural hearing loss. Facial asymmetry was confirmed as a clinical feature by GestaltMatcher and was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations. Our findings provide evidence of a novel syndromic neurodevelopmental disorder caused by bi-allelic loss-of-function variants in ZSCAN10.


Assuntos
Camundongos Knockout , Transtornos do Neurodesenvolvimento , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fatores de Transcrição/genética
10.
Genes (Basel) ; 15(1)2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275617

RESUMO

The potential of genome sequencing (GS), which allows detection of almost all types of genetic variation across nearly the entire genome of an individual, greatly expands the possibility for diagnosing genetic disorders. The opportunities provided with this single test are enticing to researchers and clinicians worldwide for human genetic research as well as clinical application. Multiple studies have highlighted the advantages of GS for genetic variant discovery, emphasizing its added value for routine clinical use. We have implemented GS as first-line genetic testing for patients with rare diseases. Here, we report on our experiences in establishing GS as a reliable diagnostic method for almost all types of genetic disorders, from validating diagnostic accuracy of sequencing pipelines to clinical implementation in routine practice.


Assuntos
Testes Genéticos , Genoma , Humanos , Testes Genéticos/métodos , Sequência de Bases , Mapeamento Cromossômico , Sequenciamento Completo do Genoma/métodos
11.
J Med Genet ; 61(2): 186-195, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37734845

RESUMO

PURPOSE: Genome sequencing (GS) is expected to reduce the diagnostic gap in rare disease genetics. We aimed to evaluate a scalable framework for genome-based analyses 'beyond the exome' in regular care of patients with inherited retinal degeneration (IRD) or inherited optic neuropathy (ION). METHODS: PCR-free short-read GS was performed on 1000 consecutive probands with IRD/ION in routine diagnostics. Complementary whole-blood RNA-sequencing (RNA-seq) was done in a subset of 74 patients. An open-source bioinformatics analysis pipeline was optimised for structural variant (SV) calling and combined RNA/DNA variation interpretation. RESULTS: A definite genetic diagnosis was established in 57.4% of cases. For another 16.7%, variants of uncertain significance were identified in known IRD/ION genes, while the underlying genetic cause remained unresolved in 25.9%. SVs or alterations in non-coding genomic regions made up for 12.7% of the observed variants. The RNA-seq studies supported the classification of two unclear variants. CONCLUSION: GS is feasible in clinical practice and reliably identifies causal variants in a substantial proportion of individuals. GS extends the diagnostic yield to rare non-coding variants and enables precise determination of SVs. The added diagnostic value of RNA-seq is limited by low expression levels of the major IRD disease genes in blood.


Assuntos
Exoma , Oftalmopatias , Humanos , Estudos Prospectivos , Sequência de Bases , RNA , Oftalmopatias/diagnóstico , Oftalmopatias/genética
12.
Eur J Hum Genet ; 32(2): 200-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37853102

RESUMO

Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES.


Assuntos
Exoma , Doenças Raras , Humanos , Doenças Raras/genética , Benchmarking , Sequenciamento do Exoma , Testes Genéticos/métodos
14.
Pancreatology ; 23(8): 957-963, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949771

RESUMO

BACKGROUND: Genetic predisposition is crucial in the pathogenesis of early-onset chronic pancreatitis (CP). So far, several genetic alterations have been identified as risk factors, predominantly in genes encoding digestive enzymes. However, many early-onset CP cases have no identified underlying cause. Chymotrypsins are a family of serine proteases that can cleave trypsinogen and lead to its degradation. Because genetic alterations in the chymotrypsins CTRC, CTRB1, and CTRB2 are associated with CP, we genetically and functionally investigated chymotrypsin-like protease (CTRL) as a potential risk factor. METHODS: We screened 1005 non-alcoholic CP patients and 1594 controls for CTRL variants by exome sequencing. We performed Western blots and activity assays to analyse secretion and proteolytic activity. We measured BiP mRNA expression to investigate the potential impact of identified alterations on endoplasmic reticulum (ER) stress. RESULTS: We identified 13 heterozygous non-synonymous CTRL variants: five exclusively in patients and three only in controls. Functionality was unchanged in 6/13 variants. Four alterations showed normal secretion but reduced (p.G20S, p.G56S, p.G61S) or abolished (p.S208F) activity. Another three variants (p.C201Y, p.G215R and p.C220G) were not secreted and already showed reduced or no activity intracellularly. However, intracellular retention did not lead to ER stress. CONCLUSION: We identified several CTRL variants, some showing potent effects on protease function and secretion. We observed these effects in variants found in patients and controls, and CTRL loss-of-function variants were not significantly more common in patients than controls. Therefore, CTRL is unlikely to play a relevant role in the development of CP.


Assuntos
Quimases , Pancreatite Crônica , Humanos , Quimases/genética , Predisposição Genética para Doença , Mutação , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Fatores de Risco
15.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37796616

RESUMO

MAD2L1BP-encoded p31comet mediates Trip13-dependent disassembly of Mad2- and Rev7-containing complexes and, through this antagonism, promotes timely spindle assembly checkpoint (SAC) silencing, faithful chromosome segregation, insulin signaling, and homology-directed repair (HDR) of DNA double-strand breaks. We identified a homozygous MAD2L1BP nonsense variant, R253*, in 2 siblings with microcephaly, epileptic encephalopathy, and juvenile granulosa cell tumors of ovary and testis. Patient-derived cells exhibited high-grade mosaic variegated aneuploidy, slowed-down proliferation, and instability of truncated p31comet mRNA and protein. Corresponding recombinant p31comet was defective in Trip13, Mad2, and Rev7 binding and unable to support SAC silencing or HDR. Furthermore, C-terminal truncation abrogated an identified interaction of p31comet with tp53. Another homozygous truncation, R227*, detected in an early-deceased patient with low-level aneuploidy, severe epileptic encephalopathy, and frequent blood glucose elevations, likely corresponds to complete loss of function, as in Mad2l1bp-/- mice. Thus, human mutations of p31comet are linked to aneuploidy and tumor predisposition.


Assuntos
Encefalopatias , Tumor de Células da Granulosa , Neoplasias Ovarianas , Feminino , Humanos , Animais , Camundongos , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Tumor de Células da Granulosa/genética , Mutação , Aneuploidia
16.
NPJ Precis Oncol ; 7(1): 106, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864096

RESUMO

A growing number of druggable targets and national initiatives for precision oncology necessitate broad genomic profiling for many cancer patients. Whole exome sequencing (WES) offers unbiased analysis of the entire coding sequence, segmentation-based detection of copy number alterations (CNAs), and accurate determination of complex biomarkers including tumor mutational burden (TMB), homologous recombination repair deficiency (HRD), and microsatellite instability (MSI). To assess the inter-institution variability of clinical WES, we performed a comparative pilot study between German Centers of Personalized Medicine (ZPMs) from five participating institutions. Tumor and matched normal DNA from 30 patients were analyzed using custom sequencing protocols and bioinformatic pipelines. Calling of somatic variants was highly concordant with a positive percentage agreement (PPA) between 91 and 95% and a positive predictive value (PPV) between 82 and 95% compared with a three-institution consensus and full agreement for 16 of 17 druggable targets. Explanations for deviations included low VAF or coverage, differing annotations, and different filter protocols. CNAs showed overall agreement in 76% for the genomic sequence with high wet-lab variability. Complex biomarkers correlated strongly between institutions (HRD: 0.79-1, TMB: 0.97-0.99) and all institutions agreed on microsatellite instability. This study will contribute to the development of quality control frameworks for comprehensive genomic profiling and sheds light onto parameters that require stringent standardization.

17.
EBioMedicine ; 96: 104797, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716236

RESUMO

BACKGROUND: Genomic characterisation has led to an improved understanding of adult melanoma. However, the aetiology of melanoma in children is still unclear and identifying the correct diagnosis and therapeutic strategies remains challenging. METHODS: Exome sequencing of matched tumour-normal pairs from 26 paediatric patients was performed to study the mutational spectrum of melanomas. The cohort was grouped into different categories: spitzoid melanoma (SM), conventional melanoma (CM), and other melanomas (OT). FINDINGS: In all patients with CM (n = 10) germline variants associated with melanoma were found in low to moderate melanoma risk genes: in 8 patients MC1R variants, in 2 patients variants in MITF, PTEN and BRCA2. Somatic BRAF mutations were detected in 60% of CMs, homozygous deletions of CDKN2A in 20%, TERTp mutations in 30%. In the SM group (n = 12), 5 patients carried at least one MC1R variant; somatic BRAF mutations were detected in 8.3%, fusions in 25% of the cases. No SM showed a homozygous CDKN2A deletion nor a TERTp mutation. In 81.8% of the CM/SM cases the UV damage signatures SBS7 and/or DBS1 were detected. The patient with melanoma arising in giant congenital nevus (CNM) demonstrated the characteristic NRAS Q61K mutation. INTERPRETATION: UV-radiation and MC1R germline variants are risk factors in the development of conventional and spitzoid paediatric melanomas. Paediatric CMs share genomic similarities with adult CMs while the SMs differ genetically from the CM group. Consistent genetic characterization of all paediatric melanomas will potentially lead to better subtype differentiation, treatment, and prevention in the future. FUNDING: Found in Acknowledgement.

19.
Eur J Hum Genet ; 31(10): 1139-1146, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507557

RESUMO

The prevalence of pathogenic and likely pathogenic (P/LP) variants in genes associated with cancer predisposition syndromes (CPS) is estimated to be 8-18% for paediatric cancer patients. In more than half of the carriers, the family history is unsuspicious for CPS. Therefore, broad genetic testing could identify germline predisposition in additional children with cancer resulting in important implications for themselves and their families. We thus evaluated clinical trio genome sequencing (TGS) in a cohort of 72 paediatric patients with solid cancers other than retinoblastoma or CNS-tumours. The most prevalent cancer types were sarcoma (n = 26), neuroblastoma (n = 15), and nephroblastoma (n = 10). Overall, P/LP variants in CPS genes were identified in 18.1% of patients (13/72) and P/LP variants in autosomal-dominant CPS genes in 9.7% (7/72). Genetic evaluation would have been recommended for the majority of patients with P/LP variants according to the Jongmans criteria. Four patients (5.6%, 4/72) carried P/LP variants in autosomal-dominant genes known to be associated with their tumour type. With the immediate information on variant inheritance, TGS facilitated the identification of a de novo P/LP in NF1, a gonadosomatic mosaic in WT1 and two pathogenic variants in one patient (DICER1 and PALB2). TGS allows a more detailed characterization of structural variants with base-pair resolution of breakpoints which can be relevant for the interpretation of copy number variants. Altogether, TGS allows comprehensive identification of children with a CPS and supports the individualised clinical management of index patients and high-risk relatives.


Assuntos
Predisposição Genética para Doença , Neoplasias , Humanos , Criança , Mutação em Linhagem Germinativa , Neoplasias/genética , Testes Genéticos/métodos , Genótipo , Ribonuclease III/genética , RNA Helicases DEAD-box/genética
20.
Eur J Neurol ; 30(9): 2854-2858, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271829

RESUMO

BACKGROUND AND PURPOSE: Adult onset neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder with a heterogeneous clinical presentation that can mimic stroke and various forms of dementia. To date, it has been described almost exclusively in Asian individuals. METHODS: This case presentation includes magnetic resonance imaging (MRI) of the neurocranium, histology by skin biopsy, and long-read genome sequencing. RESULTS: A 75-year-old Caucasian female presented with paroxysmal encephalopathy twice within a 14-month period. Brain MRI revealed high-intensity signals at the cerebral corticomedullary junction (diffusion-weighted imaging) and the paravermal area (fluid-attenuated inversion recovery), a typical distribution observed in adult onset NIID. The diagnosis was corroborated by skin biopsy, which demonstrated eosinophilic intranuclear inclusion bodies, and confirmed by long-read genome sequencing, showing an expansion of the GGC repeat in exon 1 of NOTCH2NLC. CONCLUSIONS: Our case proves adult onset NOTCH2NLC-GGC-positive NIID with typical findings on MRI and histology in a Caucasian patient and underscores the need to consider this diagnosis in non-Asian individuals.


Assuntos
Corpos de Inclusão Intranuclear , Doenças Neurodegenerativas , Adulto , Humanos , Feminino , Idoso , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA