Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(21): 216201, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856292

RESUMO

Intriguingly, conducting perovskite interfaces between ordinary band insulators are widely explored, whereas similar interfaces with Mott insulators are still not quite understood. Here, we address the (001), (110), and (111) interfaces between the LaTiO_{3} Mott, and large band gap KTaO_{3} insulators. Based on first-principles calculations, we reveal a mechanism of interfacial conductivity, which is distinct from a formerly studied one applicable to interfaces between polar wideband insulators. Here, the key factor causing conductivity is the matching of oxygen octahedra tilting in KTaO_{3} and LaTiO_{3} which, due to a small gap in the LaTiO_{3} results in its sensitivity to the crystal structure, yields metallization of its overlayer and following charge transfer from Ti to Ta. Our findings, also applicable to other Mott insulators interfaces, shed light on the emergence of conductivity observed in LaTiO_{3}/KTaO_{3} (110) where the "polar" arguments are not applicable and on the emergence of superconductivity in these structures.

2.
Nat Commun ; 11(1): 3650, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686663

RESUMO

Complex oxides show extreme sensitivity to structural distortions and defects, and the intricate balance of competing interactions which emerge at atomically defined interfaces may give rise to unexpected physics. In the interfaces of non-magnetic complex oxides, one of the most intriguing properties is the emergence of magnetism which is sensitive to chemical defects. Particularly, it is unclear which defects are responsible for the emergent magnetic interfaces. Here, we show direct and clear experimental evidence, supported by theoretical explanation, that the B-site cation stoichiometry is crucial for the creation and control of magnetism at the interface between non-magnetic ABO3-perovskite oxides, LaAlO3 and SrTiO3. We find that consecutive defect formation, driven by atomic charge compensation, establishes the formation of robust perpendicular magnetic moments at the interface. Our observations propose a route to tune these emerging magnetoelectric structures, which are strongly coupled at the polar-nonpolar complex oxide interfaces.

3.
J Phys Condens Matter ; 31(7): 075703, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30523986

RESUMO

Absorption of hydrogen by palladium causes PdH to become superconducting below [Formula: see text]. Due to the presence of one octapore and two tetrapores per each Pd atom, it is believed that [Formula: see text] of PdH[Formula: see text] should increase further. Here, using ab initio calculation we show that (i) H placed in tetrapores of PdH[Formula: see text] induces a wide optical gap in the phonon density of states, which significantly reduces the electron-phonon coupling, and that (ii) the energetically preferable octapores filled by H enable the 9 K superconductivity only. This scenario may close a long-standing problem of the high-[Formula: see text] palladium hydrides. Moreover, simulating the pore population by H and D, within ab initio molecular dynamics, we are able to explain the inverse isotope effect in the framework of the Bardeen-Cooper-Schrieffer theory.

5.
J Phys Condens Matter ; 27(42): 426003, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26443038

RESUMO

We present a first-principles study of electronic and magnetic properties of thin Co films on a BaTiO3(0 0 1) single crystal. The crystalline structure of 1-3 monolayer thick Co films was determined and served as input for calculations of the electronic and magnetic properties of the films. The estimation of exchange constants indicates that the Co films are ferromagnetic with a high critical temperature, which depends on the film thickness and the interface geometry. In addition, we calculated x-ray absorption spectra, related magnetic circular dichroism (XMCD) and linear dichroism (XLD) of the Co L 2, 3 edges as a function of Co film thickness and ferroelectric polarization of BaTiO3. We found characteristic features, which depend strongly on the magnetic properties and the structure of the film. While there is only a weak dependence of XMCD spectra on the ferroelectric polarization, the XLD of the films is much more sensitive to the polarization switching, which could possibly be observed experimentally.

7.
Phys Rev Lett ; 111(10): 105501, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-25166678

RESUMO

Using surface x-ray diffraction in combination with ab initio calculations, we demonstrate that the atomic structure of ultrathin BaTiO3 (BTO) films grown on Me(001) surfaces (Me=Fe, Pd, Pt) depends on subtle modifications of the interface chemical composition. A complete reversal of the surface termination from a BaO- [BTO on Fe(001)] to a TiO2-terminated film [BTO on Pt(001)] is observed which goes in parallel with the adsorption of submonolayer amounts of oxygen at metal hollow sites of the interface. Our results may suggest a new route to an overall control of both the surface and the interface geometry in BaTiO3/metal contacts.

8.
Phys Rev Lett ; 108(19): 197206, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003084

RESUMO

Magnetoelectric coupling allows for manipulating the magnetization by an external electric field or the electrical polarization by an external magnetic field. Here, we propose a mechanism to electrically induce 180° magnetization switching combining two effects: the magnetoelectric coupling at a multiferroic interface and magnetic interlayer exchange coupling. By means of first-principles methods, we investigate a ferroelectric layer in contact with a Fe/Au/Fe trilayer. The calculations show that the interface magnetism is strongly coupled to the ferroelectric layer. Furthermore, under certain conditions a reversal of polarization causes a sign reversal of the interlayer exchange coupling which is results in a 180° switching of the free layer magnetization. We argue that this magnetoelectric coupling mechanism is very robust and can find applications in magnetic data storage.

9.
Phys Rev Lett ; 108(21): 215502, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003278

RESUMO

Using surface x-ray diffraction and ab initio calculations we present a model of the BaTiO3(001)-(2×1) surface structure, which has not been considered so far. While the crystal is terminated by two TiO2 layers similarly to SrTiO3(001)-(2×1), we find that one out of two surface layer Ti-atoms resides in a tetragonal pyramidal oxygen environment. This peculiar geometry leads to a metallic and magnetic surface involving local magnetic moments up to 2µ(B) in magnitude located at surface Ti and O atoms. Our results are important for the understanding of the intrinsic surface metallicity of insulating oxides in general.

10.
J Phys Condens Matter ; 23(45): 455902, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22037417

RESUMO

On the basis of ab initio calculations we study the interfacial magnetoelectric effect in a prototypical biferroic Fe(L)/XO2/BaO/BaTiO3(001) (X = Ti, V, Co), with an Fe thickness L ≤ 2 monolayers. We anticipate that the use of the n-type perovskite termination instead of nominally neutral TiO2 may enhance magnetoelectricity in the system when its magnetization is robustly changed by substrate-polarization reversal.

11.
Phys Rev Lett ; 106(10): 106101, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21469813

RESUMO

Using scanning tunneling microscopy experiments in combination with first-principles calculations we have studied the geometric structure of the compressed c(7sqrt(2) × sqrt(2)) antiphase domain structure of CO on Cu(001). We find direct evidence for structural relaxations involving an inhomogeneous CO environment characterized by molecular tilting, bending, and nonterminal sites. Our analysis solves the long-standing problem of the adsorption structure of the compressed phase and is important for understanding the physical properties of this fundamental adsorption system.

12.
Phys Rev Lett ; 106(8): 087203, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21405597

RESUMO

We present an experimental and theoretical study of the geometric structure of ultrathin BaTiO(3) films grown on Fe(001). Surface x-ray diffraction reveals that the films are terminated by a BaO layer, while the TiO(2) layer is next to the top Fe layer. Cations in termination layers have incomplete oxygen shells inducing strong vertical relaxations. Onset of polarization is observed at a minimum thickness of two unit cells. Our findings are supported by first-principles calculations providing a quantitative insight into the multiferroic properties on the atomic scale.

13.
Nat Nanotechnol ; 5(11): 792-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21037573

RESUMO

Magnetoelectric coupling allows the magnetic state of a material to be changed by an applied electric field. To date, this phenomenon has mainly been observed in insulating materials such as complex multiferroic oxides. Bulk metallic systems do not exhibit magnetoelectric coupling, because applied electric fields are screened by conduction electrons. We demonstrate strong magnetoelectric coupling at the surface of thin iron films using the electric field from a scanning tunnelling microscope, and are able to write, store and read information to areas with sides of a few nanometres. Our work demonstrates that high-density, non-volatile information storage is possible in metals.

14.
J Phys Condens Matter ; 22(38): 385501, 2010 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-21386552

RESUMO

By detailed first-principles calculations we show that the Fermi energy and the Rashba splitting in disordered ternary surface alloys Bi(x)Pb(y)Sb(1 - x - y)/Ag(111) can be independently tuned by choosing the concentrations x and y of Bi and Pb, respectively. The findings are explained by three fundamental mechanisms, namely the relaxation of the adatoms, the strength of the atomic spin-orbit coupling, and band filling. By mapping the Rashba characteristics, i.e. the splitting k(R) and the Rashba energy E(R), and the Fermi energy of the surface states in the complete range of concentrations, we find that these quantities depend monotonically on x and y, with a very few exceptions. Our results suggest that we should investigate experimentally effects which rely on the Rashba spin-orbit coupling depending on spin-orbit splitting and band filling.

15.
Phys Rev Lett ; 102(25): 257203, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19659116

RESUMO

The recently discovered giant magnetic anisotropy of single magnetic Co atoms raises the hope of magnetic storage in small clusters. We present a joint experimental and theoretical study of the magnetic anisotropy and the spin dynamics of Fe and Co atoms, dimers, and trimers on Pt(111). Giant anisotropies of individual atoms and clusters as well as lifetimes of the excited states were determined with inelastic scanning tunneling spectroscopy. The short lifetimes due to hybridization-induced electron-electron scattering oppose the magnetic stability provided by the magnetic anisotropies.

16.
Phys Rev Lett ; 103(4): 046803, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19659381

RESUMO

We demonstrate a giant Rashba-type spin splitting on a semiconducting substrate by means of a Bi-trimer adlayer on a Si(111) wafer. The in-plane inversion symmetry is broken inducing a giant spin splitting with a Rashba energy of about 140 meV, much larger than what has previously been reported for any semiconductor heterostructure. The separation of the electronic states is larger than their lifetime broadening, which has been directly observed with angular resolved photoemission spectroscopy. The experimental results are confirmed by relativistic first-principles calculations.

17.
Phys Rev Lett ; 102(15): 156102, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19518654

RESUMO

Surface x-ray diffraction experiments reveal that, in cobalt-doped ZnO films two to five monolayers thick, Wurtzite-type CoO nanocrystals are coherently embedded within a hexagonal boron-nitride- (h-BN)-type ZnO matrix, supporting the model of a phase separation. First-principles calculations confirm that, in contrast with ZnO, the formation of h-BN-type CoO is unfavorable in the ultrathin film limit. Our results are important for understanding magnetic properties of transition metal-doped semiconductors in general.

20.
Phys Rev Lett ; 98(1): 016101, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17358488

RESUMO

From the basis of ab initio electronic structure calculations which include the effects of thermally excited magnetic fluctuations, we predict Mn-stabilized cubic zirconia to be ferromagnetic above 500 K. We find this material, which is well known both as an imitation diamond and as a catalyst, to be half-metallic with the majority and minority spin Mn impurity states lying in zirconia's wide gap. The Mn concentration can exceed 40%. The high-Tc ferromagnetism is robust to oxygen vacancy defects and to how the Mn impurities are distributed on the Zr fcc sublattice. We propose this ceramic as a promising future spintronics material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA