Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Cell Stem Cell ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701785

RESUMO

In mammals, the circadian clock network drives daily rhythms of tissue-specific homeostasis. To dissect daily inter-tissue communication, we constructed a mouse minimal clock network comprising only two nodes: the peripheral epidermal clock and the central brain clock. By transcriptomic and functional characterization of this isolated connection, we identified a gatekeeping function of the peripheral tissue clock with respect to systemic inputs. The epidermal clock concurrently integrates and subverts brain signals to ensure timely execution of epidermal daily physiology. Timely cell-cycle termination in the epidermal stem cell compartment depends upon incorporation of clock-driven signals originating from the brain. In contrast, the epidermal clock corrects or outcompetes potentially disruptive feeding-related signals to ensure the optimal timing of DNA replication. Together, we present an approach for cataloging the systemic dependencies of daily temporal organization in a tissue and identify an essential gate-keeping function of peripheral circadian clocks that guarantees tissue homeostasis.

2.
J Circadian Rhythms ; 22: 2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617710

RESUMO

Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.

3.
J Circadian Rhythms ; 22: 1, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617711

RESUMO

Circadian Biology intersects with diverse scientific domains, intricately woven into the fabric of organismal physiology and behavior. The rhythmic orchestration of life by the circadian clock serves as a focal point for researchers across disciplines. This retrospective examination delves into several of the scientific milestones that have fundamentally shaped our contemporary understanding of circadian rhythms. From deciphering the complexities of clock genes at a cellular level to exploring the nuances of coupled oscillators in whole organism responses to stimuli. The field has undergone significant evolution lately guided by genetics approaches. Our exploration here considers key moments in the circadian-research landscape, elucidating the trajectory of this discipline with a keen eye on scientific advancements and paradigm shifts.

5.
Eur J Neurosci ; 59(7): 1723-1742, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326974

RESUMO

The circadian clock orchestrates many physiological and behavioural rhythms in mammals with 24-h periodicity, through a hierarchical organisation, with the central clock located in the suprachiasmatic nucleus (SCN) in the hypothalamus. The circuits of the SCN generate circadian rhythms with precision, relying on intrinsic coupling mechanisms, for example, neurotransmitters like arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), neuronal gamma-aminobutyric acid (GABA) signalling and astrocytes connected by gap junctions composed of connexins (Cx). In female rodents, the presence of estrogen receptors (ERs) in the dorsal SCN suggests an influence of estrogen (E2) on the circuit timekeeping that could regulate circadian rhythm and coupling. To investigate this, we used SCN explants together with hypothalamic neurons and astrocytes. First, we showed that E2 stabilised the circadian amplitude in the SCN when rAVPs (receptor-associated vasopressin peptides) were inhibited. However, the phase delay induced by VIPAC2 (VIP receptors) inhibition remained unaffected by E2. We then showed that E2 exerted its effects in the SCN via ERß (estrogen receptor beta), resulting in increased expression of Cx36 and Cx43. Notably, specific inhibition of both connexins resulted in a significant reduction in circadian amplitude within the SCN. Remarkably, E2 restored the period with inhibited Cx36 but not with Cx43 inhibition. This implies that the network between astrocytes and neurons, responsible for coupling in the SCN, can be reinforced through E2. In conclusion, these findings provide new insights into how E2 regulates circadian rhythms ex vivo in an ERß-dependent manner, underscoring its crucial role in fortifying the SCN's rhythm.


Assuntos
Conexina 43 , Receptor beta de Estrogênio , Animais , Feminino , Conexina 43/metabolismo , Receptor beta de Estrogênio/metabolismo , Núcleo Supraquiasmático/fisiologia , Ritmo Circadiano/fisiologia , Junções Comunicantes/metabolismo , Conexinas/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia , Peptídeo Intestinal Vasoativo/metabolismo , Estrogênios/farmacologia , Mamíferos/metabolismo
6.
Sci Rep ; 14(1): 640, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182610

RESUMO

Thyroid hormones (THs) are important regulators of systemic energy metabolism. In the liver, they stimulate lipid and cholesterol turnover and increase systemic energy bioavailability. It is still unknown how the TH state interacts with the circadian clock, another important regulator of energy metabolism. We addressed this question using a mouse model of hypothyroidism and performed circadian analyses. Low TH levels decreased locomotor activity, food intake, and body temperature mostly in the active phase. Concurrently, liver transcriptome profiling showed only subtle effects compared to elevated TH conditions. Comparative circadian transcriptome profiling revealed alterations in mesor, amplitude, and phase of transcript levels in the livers of low-TH mice. Genes associated with cholesterol uptake, biosynthesis, and bile acid secretion showed reduced mesor. Increased and decreased cholesterol levels in the serum and liver were identified, respectively. Combining data from low- and high-TH conditions allowed the identification of 516 genes with mesor changes as molecular markers of the liver TH state. We explored these genes and created an expression panel that assesses liver TH state in a time-of-day dependent manner. Our findings suggest that the liver has a low TH action under physiological conditions. Circadian profiling reveals genes as potential markers of liver TH state.


Assuntos
Fígado , Transcriptoma , Masculino , Animais , Ritmo Circadiano/genética , Hormônios Tireóideos , Colesterol
7.
Cells ; 13(2)2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38247842

RESUMO

Internal circadian clocks coordinate 24 h rhythms in behavior and physiology. Many immune functions show daily oscillations, and cellular circadian clocks can impact immune functions and disease outcome. Inflammation may disrupt circadian clocks in peripheral tissues and innate immune cells. However, it remains elusive if chronic inflammation impacts adaptive immune cell clock, e.g., in CD4+ and CD8+ T lymphocytes. We studied this in the experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis, as an established experimental paradigm for chronic inflammation. We analyzed splenic T cell circadian clock and immune gene expression rhythms in mice with late-stage EAE, CFA/PTx-treated, and untreated mice. In both treatment groups, clock gene expression rhythms were altered with differential effects for baseline expression and peak phase compared with control mice. Most immune cell marker genes tested in this study did not show circadian oscillations in either of the three groups, but time-of-day- independent alterations were observed in EAE and CFA/PTx compared to control mice. Notably, T cell effects were likely independent of central clock function as circadian behavioral rhythms in EAE mice remained intact. Together, chronic inflammation induced by CFA/PTx treatment and EAE immunization has lasting effects on circadian rhythms in peripheral immune cells.


Assuntos
Linfócitos T CD8-Positivos , Encefalomielite Autoimune Experimental , Animais , Camundongos , Inflamação , Ritmo Circadiano , Linfócitos T CD4-Positivos
8.
Nutrients ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37960280

RESUMO

Among the many factors affecting general health and resilience to disease, lifestyle is at the same time the most controllable and the most influential factor [...].


Assuntos
Exercício Físico , Estilo de Vida Saudável , Humanos , Dieta , Sono , Doença Crônica
9.
Cell Mol Gastroenterol Hepatol ; 16(3): 341-354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37270062

RESUMO

BACKGROUND & AIMS: The liver ensures organismal homeostasis through modulation of physiological functions over the course of the day. How liver diseases such as nonalcoholic steatohepatitis (NASH) affect daily transcriptome rhythms in the liver remains elusive. METHODS: To start closing this gap, we evaluated the impact of NASH on the diurnal regulation of the liver transcriptome in mice. In addition, we investigated how stringent consideration of circadian rhythmicity affects the outcomes of NASH transcriptome analyses. RESULTS: Comparative rhythm analysis of the liver transcriptome from diet-induced NASH and control mice showed an almost 3-hour phase advance in global gene expression rhythms. Rhythmically expressed genes associated with DNA repair and cell-cycle regulation showed increased overall expression and circadian amplitude. In contrast, lipid and glucose metabolism-associated genes showed loss of circadian amplitude, reduced overall expression, and phase advances in NASH livers. Comparison of NASH-induced liver transcriptome responses between published studies showed little overlap (12%) in differentially expressed genes (DEGs). However, by controlling for sampling time and using circadian analytical tools, a 7-fold increase in DEG detection was achieved compared with methods without time control. CONCLUSIONS: NASH had a strong effect on circadian liver transcriptome rhythms with phase- and amplitude-specific effects for key metabolic and cell repair pathways, respectively. Accounting for circadian rhythms in NASH transcriptome studies markedly improves DEG detection and enhances reproducibility.


Assuntos
Ritmo Circadiano , Hepatopatia Gordurosa não Alcoólica , Transcriptoma , Animais , Camundongos , Ritmo Circadiano/genética , Reparo do DNA
10.
Front Neurosci ; 17: 1165230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179561

RESUMO

Glucocorticoids (GCs) are essential drivers of mammalian tissue growth and maturation during one of the most critical developmental windows, the perinatal period. The developing circadian clock is shaped by maternal GCs. GC deficits, excess, or exposure at the wrong time of day leads to persisting effects later in life. During adulthood, GCs are one of the main hormonal outputs of the circadian system, peaking at the beginning of the active phase (i.e., the morning in humans and the evening in nocturnal rodents) and contributing to the coordination of complex functions such as energy metabolism and behavior, across the day. Our article discusses the current knowledge on the development of the circadian system with a focus on the role of GC rhythm. We explore the bidirectional interaction between GCs and clocks at the molecular and systemic levels, discuss the evidence of GC influence on the master clock in the suprachiasmatic nuclei (SCN) of the hypothalamus during development and in the adult system.

11.
Biology (Basel) ; 12(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36979075

RESUMO

Most lifeforms on earth use endogenous, so-called circadian clocks to adapt to 24-h cycles in environmental demands driven by the planet's rotation around its axis. Interactions with the environment change over the course of a lifetime, and so does regulation of the circadian clock system. In this review, we summarize how circadian clocks develop in humans and experimental rodents during embryonic development, how they mature after birth and what changes occur during puberty, adolescence and with increasing age. Special emphasis is laid on the circadian regulation of reproductive systems as major organizers of life segments and life span. We discuss differences in sexes and outline potential areas for future research. Finally, potential options for medical applications of lifespan chronobiology are discussed.

12.
Acta Physiol (Oxf) ; 238(1): e13966, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951649

RESUMO

The global north is facing an unprecedented rise in the prevalence of neurodegenerative diseases. The increasing incidence of Parkinson's disease is being referred to as a pandemic. The reason for the enormous increase is only partly understood. Lifestyle factors are known to play a role, but they alone cannot account for the surge. One factor that-although being recognized as important-has not been explored in detail so far is the influence of circadian rhythms. Sleep and circadian rhythm disruption are known as key factors in neurodegeneration, and their occurrence during early disease stages suggests a causal role in the pathogenesis. Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) has been identified as a prodromal state of α-synucleinopathies, such as Parkinson's disease, Lewy body dementia, and multiple system atrophy offering a window for insights into the early development of these diseases. Even though REM sleep is the sleep state most pronounced, driven and modulated by the circadian timing system, specific circadian abnormalities have not been described in iRBD. Novel experimental and clinical approaches exploiting the molecular circuitry underlying circadian timekeeping hold promise to disentangle some of the pathophysiologic mechanisms of α-synucleinopathies. In this review, we summarize current knowledge on sleep and circadian rhythm disruptions in α-synucleinopathies with an emphasis on molecular aspects and therapeutic potentials. These insights might contribute to our understanding of the pathogenesis of neurodegenerative diseases and may allow therapeutic interventions addressing the disturbed circadian system at the early stage of disease.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Humanos , Doença de Parkinson/epidemiologia , Transtorno do Comportamento do Sono REM/tratamento farmacológico , Transtorno do Comportamento do Sono REM/epidemiologia , Ritmo Circadiano , Sono
13.
Acta Physiol (Oxf) ; 237(4): e13944, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36744985

RESUMO

Circadian rhythms are imprinted in all organisms and influence virtually all aspects of physiology and behavior in adaptation to the 24-h day-night cycle. This recognition of a circadian timekeeping system permeating essentially all healthy functioning of body and mind quickly leads to the realization that, in turn, human ailments should be probed for the degree to which they are rooted in or marked by disruptions and dysregulations of circadian clock functions in the human body. In this review, we will focus on psychosis as a key mental illness and foremost one of its cardinal symptoms: auditory hallucinations. We will discuss recent empirical evidence and conceptual advances probing the potential role of circadian disruption in auditory hallucinations. Moreover, a dysbalance in excitation and inhibition within cortical networks, which in turn drive a disinhibition of dopaminergic signaling, will be highlighted as central physiological mechanism. Finally, we will propose two avenues for experimentally intervening on the circadian influences to potentially alleviate hallucinations in psychotic disorders.


Assuntos
Relógios Circadianos , Transtornos Psicóticos , Humanos , Ritmo Circadiano/fisiologia , Alucinações , Relógios Circadianos/fisiologia , Transdução de Sinais
14.
Mol Metab ; 69: 101691, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746332

RESUMO

OBJECTIVE: Snacking, i.e., the intake of small amounts of palatable food items, is a common behavior in modern societies, promoting overeating and obesity. Shifting food intake into the daily rest phase disrupts circadian rhythms and is also known to stimulate weight gain. We therefore hypothesized that chronic snacking in the inactive phase may promote body weight gain and that this effect is based on disruption of circadian clocks. METHODS: Male mice were fed a daily chocolate snack either during their rest or their active phase and body weight development and metabolic parameters were investigated. Snacking experiments were repeated in constant darkness and in clock-deficient mutant mice to examine the role of external and internal time cues in mediating the metabolic effects of snacking. RESULTS: Chronic snacking in the rest phase increased body weight gain and disrupted metabolic circadian rhythms in energy expenditure, body temperature, and locomotor activity. Additionally, these rest phase snacking mice assimilated more energy during the inactive phase. Body weight remained increased in rest phase snacking wildtype mice in constant darkness as well as in clock-deficient mutant mice under a regular light-dark cycle compared to mice snacking in the active phase. Weight gain effects were abolished in clock-deficient mice in constant darkness. CONCLUSIONS: Our data suggest that mistimed snacking increases energy resorption and promotes body weight gain. This effect requires a functional circadian clock at least under constant darkness conditions.


Assuntos
Lanches , Aumento de Peso , Camundongos , Animais , Masculino , Ritmo Circadiano , Obesidade , Peso Corporal
15.
Acta Physiol (Oxf) ; 237(3): e13936, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36645134

RESUMO

The circadian clock is a hierarchical timing system regulating most physiological and behavioral functions with a period of approximately 24 h in humans and other mammalian species. The circadian clock drives daily eating rhythms that, in turn, reinforce the circadian clock network itself to anticipate and orchestrate metabolic responses to food intake. Eating is tightly interconnected with the circadian clock and recent evidence shows that the timing of meals is crucial for the control of appetite and metabolic regulation. Obesity results from combined long-term dysregulation in food intake (homeostatic and hedonic circuits), energy expenditure, and energy storage. Increasing evidence supports that the loss of synchrony of daily rhythms significantly impairs metabolic homeostasis and is associated with obesity. This review presents an overview of mechanisms regulating food intake (homeostatic/hedonic) and focuses on the crucial role of the circadian clock on the metabolic response to eating, thus providing a fundamental research axis to maintain a healthy eating behavior.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Humanos , Animais , Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Obesidade , Relógios Circadianos/fisiologia , Ingestão de Alimentos/fisiologia , Mamíferos
16.
Acta Physiol (Oxf) ; 237(3): e13928, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36625310

RESUMO

Circadian clocks are important regulators of physiology and behavior. In the brain, circadian clocks have been described in many centers of the central reward system. They affect neurotransmitter signaling, neuroendocrine circuits, and the sensitivity to external stimulation. Circadian disruption affects reward signaling, promoting the development of behavioral and substance use disorders. In this review, we summarize our current knowledge of circadian clock-reward crosstalk. We show how chronodisruption affects reward signaling in different animal models. We then translate these findings to circadian aspects of human reward (dys-) function and its clinical implications. Finally, we devise approaches to and challenges in implementing the concepts of circadian medicine in the therapy of substance use disorders.


Assuntos
Relógios Circadianos , Transtornos Relacionados ao Uso de Substâncias , Animais , Humanos , Ritmo Circadiano/fisiologia , Relógios Circadianos/fisiologia , Encéfalo/fisiologia , Recompensa
17.
Acta Physiol (Oxf) ; 237(3): e13915, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36599410

RESUMO

The circadian clock comprises a cellular endogenous timing system coordinating the alignment of physiological processes with geophysical time. Disruption of circadian rhythms has been associated with several metabolic diseases. In this review, we focus on liver as a major metabolic tissue and one of the most well-studied organs with regard to circadian regulation. We summarize current knowledge about the role of local and systemic clocks and rhythms in regulating biological functions of the liver. We discuss how the disruption of circadian rhythms influences the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). We also critically evaluate whether NAFLD/NASH may in turn result in chronodisruption. The last chapter focuses on potential roles of the clock system in prevention and treatment of NAFLD/NASH and the interaction of current NASH drug candidates with liver circadian rhythms and clocks. It becomes increasingly clear that paying attention to circadian timing may open new avenues for the optimization of NAFLD/NASH therapies and provide interesting targets for prevention and treatment of these increasingly prevalent disorders.


Assuntos
Relógios Circadianos , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Relógios Circadianos/fisiologia , Fígado/metabolismo , Ritmo Circadiano/fisiologia
18.
Pharmacopsychiatry ; 56(3): 108-117, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-31665791

RESUMO

To anticipate and adapt to daily recurring events defined by the earth's rotation such as light-dark and temperature cycles, most species have developed internal, so-called circadian clocks. These clocks are involved in the regulation of behaviors such as the sleep-wake cycle and the secretion of hormones and neurotransmitters. Disruptions of the circadian system affect cognitive functions and are associated with various diseases that are characterized by altered neurotransmitter signaling. In this review, we summarize the current knowledge about the interplay of the circadian clock and the regulation of psychiatric health and disease.


Assuntos
Relógios Circadianos , Humanos , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia
20.
Mol Metab ; 66: 101628, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334897

RESUMO

OBJECTIVE: Internal clocks time behavior and physiology, including the gut microbiome, in a circadian (∼24 h) manner. Mismatch between internal and external time, e.g. during shift work, disrupts circadian system coordination promoting the development of obesity and type 2 diabetes (T2D). Conversely, body weight changes induce microbiota dysbiosis. The relationship between circadian disruption and microbiota dysbiosis in metabolic diseases, however, remains largely unknown. METHODS: Core and accessory clock gene expression in different gastrointestinal (GI) tissues were determined by qPCR in two different models of circadian disruption - mice with Bmal1 deficiency in the circadian pacemaker, the suprachiasmatic nucleus (Bmal1SCNfl/-), and wild-type mice exposed to simulated shift work (SSW). Body composition and energy balance were evaluated by nuclear magnetic resonance (NMR), bomb calorimetry, food intake and running-wheel activity. Intestinal permeability was measured in an Ussing chamber. Microbiota composition and functionality were evaluated by 16S rRNA gene amplicon sequencing, PICRUST2.0 analysis and targeted metabolomics. Finally, microbiota transfer was conducted to evaluate the functional impact of SSW-associated microbiota on the host's physiology. RESULTS: Both chronodisruption models show desynchronization within and between peripheral clocks in GI tissues and reduced microbial rhythmicity, in particular in taxa involved in short-chain fatty acid (SCFA) fermentation and lipid metabolism. In Bmal1SCNfl/- mice, loss of rhythmicity in microbial functioning associates with previously shown increased body weight, dysfunctional glucose homeostasis and adiposity. Similarly, we observe an increase in body weight in SSW mice. Germ-free colonization experiments with SSW-associated microbiota mechanistically link body weight gain to microbial changes. Moreover, alterations in expression of peripheral clock genes as well as clock-controlled genes (CCGs) relevant for metabolic functioning of the host were observed in recipients, indicating a bidirectional relationship between microbiota rhythmicity and peripheral clock regulation. CONCLUSIONS: Collectively, our data suggest that loss of rhythmicity in bacteria taxa and their products, which likely originates in desynchronization of intestinal clocks, promotes metabolic abnormalities during shift work.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Camundongos , Animais , Microbioma Gastrointestinal/genética , Disbiose , RNA Ribossômico 16S , Fatores de Transcrição ARNTL , Aumento de Peso/genética , Obesidade/genética , Peso Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA