Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Clin Invest ; 134(7)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38290093

RESUMO

The measles, mumps, and rubella (MMR) vaccine protects against all-cause mortality in children, but the immunological mechanisms mediating these effects are poorly known. We systematically investigated whether MMR can induce long-term functional changes in innate immune cells, a process termed trained immunity, that could at least partially mediate this heterologous protection. In a randomized, placebo-controlled trial, 39 healthy adults received either the MMR vaccine or a placebo. Using single-cell RNA-Seq, we found that MMR caused transcriptomic changes in CD14+ monocytes and NK cells, but most profoundly in γδ T cells. Monocyte function was not altered by MMR vaccination. In contrast, the function of γδ T cells was markedly enhanced by MMR vaccination, with higher production of TNF and IFN-γ, as well as upregulation of cellular metabolic pathways. In conclusion, we describe a trained immunity program characterized by modulation of γδ T cell function induced by MMR vaccination.


Assuntos
Caxumba , Rubéola (Sarampo Alemão) , Criança , Adulto , Humanos , Lactente , Caxumba/prevenção & controle , Vacina contra Sarampo-Caxumba-Rubéola , Rubéola (Sarampo Alemão)/prevenção & controle , Reprogramação Metabólica , Imunidade Treinada , Vacinação , Anticorpos Antivirais
2.
Trends Microbiol ; 32(1): 13-16, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37845134

RESUMO

HIV-1-related neurocognitive impairment affects a significant proportion of people living with HIV, and accelerated brain aging has been implicated in its pathogenesis. This forum explores the application of cellular rejuvenation strategies to target molecular mechanisms of brain aging, promote neuronal health, and combat cognitive decline.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/complicações , Infecções por HIV/terapia , Rejuvenescimento , Envelhecimento/patologia , Envelhecimento/psicologia , Encéfalo
3.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35631367

RESUMO

The C30 endopeptidase (3C-like protease; 3CLpro) is essential for the life cycle of SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) since it plays a pivotal role in viral replication and transcription and, hence, is a promising drug target. Molecules isolated from animals, insects, plants, or microorganisms can serve as a scaffold for the design of novel biopharmaceutical products. Crotamine, a small cationic peptide from the venom of the rattlesnake Crotalus durissus terrificus, has been the focus of many studies since it exhibits activities such as analgesic, in vitro antibacterial, and hemolytic activities. The crotamine derivative L-peptides (L-CDP) that inhibit the 3CL protease in the low µM range were examined since they are susceptible to proteolytic degradation; we explored the utility of their D-enantiomers form. Comparative uptake inhibition analysis showed D-CDP as a promising prototype for a D-peptide-based drug. We also found that the D-peptides can impair SARS-CoV-2 replication in vivo, probably targeting the viral protease 3CLpro.

4.
Front Immunol ; 13: 838132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464396

RESUMO

The majority of COVID-19 patients experience mild to moderate disease course and recover within a few weeks. An increasing number of studies characterized the long-term changes in the specific anti-SARS-CoV-2 immune responses, but how COVID-19 shapes the innate and heterologous adaptive immune system after recovery is less well known. To comprehensively investigate the post-SARS-CoV-2 infection sequelae on the immune system, we performed a multi-omics study by integrating single-cell RNA-sequencing, single-cell ATAC-sequencing, genome-wide DNA methylation profiling, and functional validation experiments in 14 convalescent COVID-19 and 15 healthy individuals. We showed that immune responses generally recover without major sequelae after COVID-19. However, subtle differences persist at the transcriptomic level in monocytes, with downregulation of the interferon pathway, while DNA methylation also displays minor changes in convalescent COVID-19 individuals. However, these differences did not affect the cytokine production capacity of PBMCs upon different bacterial, viral, and fungal stimuli, although baseline release of IL-1Ra and IFN-γ was higher in convalescent individuals. In conclusion, we propose that despite minor differences in epigenetic and transcriptional programs, the immune system of convalescent COVID-19 patients largely recovers to the homeostatic level of healthy individuals.


Assuntos
COVID-19 , Convalescença , Progressão da Doença , Humanos , Leucócitos Mononucleares , SARS-CoV-2
5.
J Med Virol ; 94(3): 1096-1103, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34716706

RESUMO

We used enzyme-linked immunoassay methods to measure the prevalence and the levels of antibody responses to the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and four seasonal human coronaviruses (HCoV-OC43, HCoV-HKU1, HCoV 229E, and HCoV-NL63) in a cohort of 115 convalescent plasma donors infected with SARS-CoV-2 (1-61 days after symptom onset) compared to antibody levels in 114 individuals with no evidence of a recent infection with SARS-CoV-2. In the humoral response to the four seasonal coronaviruses, only HCoV-HKU1- and HCoV-229E-assays showed slightly elevated antibody levels in the COVID group compared to the control group. While in the COVID-group the levels of SARS-CoV-2 antibodies correlated significantly with disease severity, no association was found in the levels of antibodies against the seasonal coronaviruses. The most striking result in both groups was that the levels of antibodies against all tested coronaviruses, including the new SARS-CoV-2 showed a highly significant correlation with each other. There seems to be an individual predisposition to a weaker or stronger humoral immune response against all known seasonal human coronaviruses including the new SARS-CoV-2, which could lead to a definition of low and high responders against human coronaviruses with potential impact on the assessment of postinfection antibody levels and protection.


Assuntos
COVID-19 , Coronavirus Humano 229E , COVID-19/terapia , Reações Cruzadas , Humanos , Imunização Passiva , SARS-CoV-2 , Estações do Ano , Glicoproteína da Espícula de Coronavírus , Soroterapia para COVID-19
6.
PLoS Pathog ; 17(10): e1009928, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695164

RESUMO

Non-specific protective effects of certain vaccines have been reported, and long-term boosting of innate immunity, termed trained immunity, has been proposed as one of the mechanisms mediating these effects. Several epidemiological studies suggested cross-protection between influenza vaccination and COVID-19. In a large academic Dutch hospital, we found that SARS-CoV-2 infection was less common among employees who had received a previous influenza vaccination: relative risk reductions of 37% and 49% were observed following influenza vaccination during the first and second COVID-19 waves, respectively. The quadrivalent inactivated influenza vaccine induced a trained immunity program that boosted innate immune responses against various viral stimuli and fine-tuned the anti-SARS-CoV-2 response, which may result in better protection against COVID-19. Influenza vaccination led to transcriptional reprogramming of monocytes and reduced systemic inflammation. These epidemiological and immunological data argue for potential benefits of influenza vaccination against COVID-19, and future randomized trials are warranted to test this possibility.


Assuntos
COVID-19/imunologia , Proteção Cruzada/fisiologia , Imunidade Inata/fisiologia , Vacinas contra Influenza/administração & dosagem , COVID-19/epidemiologia , COVID-19/prevenção & controle , Citocinas/imunologia , Citocinas/metabolismo , Regulação para Baixo , Imidazóis/imunologia , Incidência , Vacinas contra Influenza/imunologia , Países Baixos/epidemiologia , Recursos Humanos em Hospital , Poli I-C/imunologia , Proteômica , Fatores de Risco , Análise de Sequência de RNA
7.
Viruses ; 13(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918368

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes COVID-19 and is responsible for the ongoing pandemic. Screening of potential antiviral drugs against SARS-CoV-2 depend on in vitro experiments, which are based on the quantification of the virus titer. Here, we used virus-induced cytopathic effects (CPE) in brightfield microscopy of SARS-CoV-2-infected monolayers to quantify the virus titer. Images were classified using deep transfer learning (DTL) that fine-tune the last layers of a pre-trained Resnet18 (ImageNet). To exclude toxic concentrations of potential drugs, the network was expanded to include a toxic score (TOX) that detected cell death (CPETOXnet). With this analytic tool, the inhibitory effects of chloroquine, hydroxychloroquine, remdesivir, and emetine were validated. Taken together we developed a simple method and provided open access implementation to quantify SARS-CoV-2 titers and drug toxicity in experimental settings, which may be adaptable to assays with other viruses. The quantification of virus titers from brightfield images could accelerate the experimental approach for antiviral testing.


Assuntos
Antivirais/farmacologia , Aprendizado Profundo , Avaliação Pré-Clínica de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Aprendizado de Máquina , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Animais , COVID-19 , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus , Fosfoproteínas , Células Vero , Carga Viral/efeitos dos fármacos
8.
EMBO J ; 39(20): e106230, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32876341

RESUMO

COVID-19 pandemic caused by SARS-CoV-2 infection is a public health emergency. COVID-19 typically exhibits respiratory illness. Unexpectedly, emerging clinical reports indicate that neurological symptoms continue to rise, suggesting detrimental effects of SARS-CoV-2 on the central nervous system (CNS). Here, we show that a Düsseldorf isolate of SARS-CoV-2 enters 3D human brain organoids within 2 days of exposure. We identified that SARS-CoV-2 preferably targets neurons of brain organoids. Imaging neurons of organoids reveal that SARS-CoV-2 exposure is associated with altered distribution of Tau from axons to soma, hyperphosphorylation, and apparent neuronal death. Our studies, therefore, provide initial insights into the potential neurotoxic effect of SARS-CoV-2 and emphasize that brain organoids could model CNS pathologies of COVID-19.


Assuntos
Betacoronavirus/fisiologia , Encéfalo/virologia , Neurônios/virologia , Animais , Morte Celular , Chlorocebus aethiops , Humanos , Doenças do Sistema Nervoso/virologia , Organoides , SARS-CoV-2 , Células Vero , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA