RESUMO
Embryo-uterine interaction during early pregnancy critically depends on the coordinated expression of numerous genes at the site of implantation. The epigenetic mechanism through DNA methylation (DNM) plays a major role in the control of gene expression, although this regulatory event remains unknown in uterine implantation sites. Our analysis revealed the presence of DNA methyltransferase 1 (Dnmt1) in mouse endometrial cells on the receptive d 4 of pregnancy and early postattachment (d 5) phase, whereas Dnmt3a had lower abundant expression. Both Dnmt1 and Dnmt3a were coordinately expressed in decidual cells on d 6-8. 5-Methycytosine showed a similar expression pattern to that of Dnmt1. The preimplantation inhibition of DNM by 5-aza-2'-deoxycytodine was not antagonistic for embryonic attachment, although endometrial stromal cell proliferation at the site of implantation was down-regulated, indicating a disturbance with the postattachment decidualization event. Indeed, the peri- or postimplantation inhibition of DNM caused significant abrogation of decidualization, with concomitant loss of embryos. We next identified decidual genes undergoing alteration of DNM using methylation-sensitive restriction fingerprinting. One such gene, Chromobox homolog 4, an epigenetic regulator in the polycomb group protein family, exhibited hypomethylation in promoter DNA and increased expression with the onset of decidualization. Furthermore, inhibition of DNM resulted in enhanced expression of hypermethylated genes (Bcl3 and Slc16a3) in the decidual bed as compared with control, indicating aberration of gene expression may be associated with DNM-inhibition-induced decidual perturbation. Overall, these results suggest that uterine DNM plays a major role for successful decidualization and embryo development during early pregnancy.
Assuntos
Metilação de DNA , Decídua/patologia , Epigênese Genética , Células Estromais/citologia , Útero/patologia , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Decitabina , Feminino , Camundongos , Gravidez , Prenhez , Regiões Promotoras Genéticas , Útero/citologiaRESUMO
Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation.
Assuntos
Decídua/citologia , Regulação da Expressão Gênica , Mitocôndrias/metabolismo , Poliploidia , Trifosfato de Adenosina/biossíntese , Animais , Apoptose/genética , Divisão Celular/genética , Feminino , Camundongos , Mitocôndrias/fisiologia , TranscriptomaRESUMO
Although estradiol-17ß (E2)-regulated early and late phase uterine responses have been well defined, the molecular mechanisms linking the phases remain poorly understood. We have previously shown that E2-regulated early signals mediate cross talk with estrogen receptor (ER)-α to elicit uterine late growth responses. G protein-coupled receptor (GPR30) has been implicated in early nongenomic signaling mediated by E2, although its role in E2-dependent uterine biology is unclear. Using selective activation of GPR30 by G-1, we show here a new function of GPR30 in regulating early signaling events, including the inhibition of ERK1/2 and ERα (Ser118) phosphorylation signals and perturbation of growth regulation under the direction of E2 in the mouse uterus. We observed that GPR30 primarily localizes in the uterine epithelial cells, and its activation alters gene expression and mediates inhibition of ERK1/2 and ERα (Ser118) phosphorylation signals in the stromal compartment, suggesting a paracrine signaling is involved. Importantly, viral-driven manipulation of GPR30 or pharmacological inhibition of ERK1/2 activation effectively alters E2-dependent uterine growth responses. Overall, GPR30 is a negative regulator of ERα-dependent uterine growth in response to E2. Our work has uncovered a novel GPR30-regulated inhibitory event, which may be physiologically relevant in both normal and pathological situations to negatively balance ERα-dependent uterine growth regulatory functions induced by E2.