Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(6)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204523

RESUMO

An extensive series of 128 halogen-bonded complexes formed by trimethylphosphine oxide and various F-, Cl-, Br-, I- and At-containing molecules, ranging in energy from 0 to 124 kJ/mol, is studied by DFT calculations in vacuum. The results reveal correlations between R-X⋅⋅⋅O=PMe3 halogen bond energy ΔE, X⋅⋅⋅O distance r, halogen's σ-hole size, QTAIM parameters at halogen bond critical point and changes of spectroscopic parameters of phosphine oxide upon complexation, such as 31P NMR chemical shift, ΔδP, and P=O stretching frequency, Δν. Some of the correlations are halogen-specific, i.e., different for F, Cl, Br, I and At, such as ΔE(r), while others are general, i.e., fulfilled for the whole set of complexes at once, such as ΔE(ΔδP). The proposed correlations could be used to estimate the halogen bond properties in disordered media (liquids, solutions, polymers, glasses) from the corresponding NMR and IR spectra.


Assuntos
Halogênios/química , Fosfinas/química , Teoria da Densidade Funcional , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Eletricidade Estática
2.
J Phys Chem A ; 123(31): 6761-6771, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31305076

RESUMO

The monomers, H-bonded cyclic dimers, and trimers of five acids were studied by density functional theory calculations, such as hypophosphorous acid (H2POOH, 1), dimethylphosphinic acid (Me2POOH, 2), phenylphosphinic acid (PhHPOOH, 3), dimethylphosphoric acid ((MeO)2POOH, 4), and diphenylphosphoric acid ((PhO)2POOH, 5). Particular attention was paid to the conformational manifold existing due to the internal degrees of freedom: proton transfer (PT), puckering ("twist") within the ring of H-bonds, and mobility of the substituents (namely, -Ph, -OMe, and -OPh rotations). For acid 3, the number of conformers is additionally increased because of the varying relative orientation of nonequivalent substituents in cyclic complexes. We show that 31P NMR chemical shifts (δP) are very sensitive to the details of the conformation, spanning ranges from ca. 1 ppm (for trimers of acids 1 and 2) to ca. 12 ppm (for trimers of 4). The energy barriers for the transitions between conformers are rather low (<6 kcal/mol for PTs, <2.5 kcal/mol for puckerings, and ca. <3 kcal/mol for rotations of substituents), such that the fast exchange regime in the NMR timescale and subsequent δP averaging are expected. Correlations are proposed linking the change of average δP with the H-bond energy, showing the slope of ca. 4 ppm per kcal/mol. The sensitivity of δP to the OPO angle and the OPOH dihedral angle and the geometries of both H-bonds formed by the POOH moiety are analyzed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA