Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(12)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740995

RESUMO

Mesenchymal stromal cell (MSC)-based therapies for inflammatory diseases rely mainly on the paracrine ability to modulate the activity of macrophages. Despite recent advances, there is scarce information regarding changes of the secretome content attributed to physiomimetic cultures and, especially, how secretome content influence on macrophage activity for therapy. hLMSCs from human donors were cultured on devices developed in house that enabled lung-mimetic strain. hLMSC secretome was analyzed for typical cytokines, chemokines and growth factors. RNA was analyzed for the gene expression of CTGF and CYR61. Human monocytes were differentiated to macrophages and assessed for their phagocytic capacity and for M1/M2 subtypes by the analysis of typical cell surface markers in the presence of hLMSC secretome. CTGF and CYR61 displayed a marked reduction when cultured in lung-derived hydrogels (L-Hydrogels). The secretome showed that lung-derived scaffolds had a distinct secretion while there was a large overlap between L-Hydrogel and the conventionally (2D) cultured samples. Additionally, secretome from L-Scaffold showed an HGF increase, while IL-6 and TNF-α decreased in lung-mimetic environments. Similarly, phagocytosis decreased in a lung-mimetic environment. L-Scaffold showed a decrease of M1 population while stretch upregulated M2b subpopulations. In summary, mechanical features of the lung ECM and stretch orchestrate anti-inflammatory and immunosuppressive outcomes of hLMSCs.


Assuntos
Células-Tronco Mesenquimais , Secretoma , Humanos , Hidrogéis , Pulmão , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo
2.
Front Endocrinol (Lausanne) ; 11: 617704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33716954

RESUMO

Usually poor ovarian response (POR) to gonadotropins reflects a diminished ovarian reserve (DOR) that gives place to few recruitable follicles despite aggressive stimulation. The reduction in the quantity and quality of the oocytes with advanced age is physiological. However, some women experience DOR much earlier and become prematurely infertile, producing an accelerated follicular depletion towards primary ovarian insufficiency (POI). Up to now, egg donation has been commonly used to treat their infertility. In the last thirty years, specialists in assisted reproduction have focused their attention on the final stages of folliculogenesis, those that depend on the action of gonadotrophins. Nevertheless, recently novel aspects have been known to act in the initial phases, with activating and inhibiting elements. In vitro activation (IVA) combining the in vitro stimulation of the ovarian Akt signaling pathway in ovarian cortex fragments with a method named Hippo-signaling disruption. Later, a simplification of the technique designated Drug-Free IVA have shown encouraging results in patients with POI. Another innovative therapeutic option in these patients is the infusion of bone marrow-derived stem cells (BMDSC) in order to supply an adequate ovarian niche to maintain and/or promote follicular rescue in patients with impaired or aged ovarian reserves. In this review, for the first time, both therapeutic options are addressed together in a common clinical setting. The aim of this review is to analyze the physiological aspects on which these innovative techniques are based; the preliminary results obtained up to now; and the possible therapeutic role that they may have in the future with DOR and POI patients.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Folículo Ovariano/metabolismo , Reserva Ovariana/fisiologia , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/terapia , Animais , Feminino , Humanos , Transplante de Células-Tronco Mesenquimais/tendências , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco/métodos , Transplante de Células-Tronco/tendências
3.
Front Oncol ; 9: 43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788287

RESUMO

Hypoxia is a common characteristic of many solid tumors that has been associated with tumor aggressiveness. Limited diffusion of oxygen generates a gradient of oxygen availability from the blood vessel to the interstitial space and may underlie the recruitment of macrophages fostering cancer progression. However, the available data based on the recruitment of circulating cells to the tumor microenvironment has been so far carried out by conventional co-culture systems which ignore the hypoxic gradient between the vessel to the tumor interstitium. Here, we have designed a novel easy-to-build cell culture device that enables evaluation of cellular cross-talk and cell migration while they are being simultaneously exposed to different oxygenation environments. As a proof-of-concept of the potential role of differential oxygenation among interacting cells we have evaluated the activation and recruitment of macrophages in response to hypoxic melanoma, breast, and kidney cancer cells. We found that hypoxic melanoma and breast cancer cells co-cultured with normoxic macrophages enhanced their directional migration. By contrast, hypoxic kidney cells were not able to increase their recruitment. We also identified well-described hypoxia-induced pathways which could contribute in the immune cell recruitment (VEGFA and PTGS2 genes). Moreover, melanoma and breast cancer increased their proliferation. However, oxygenation levels affected neither kidney cancer cell proliferation nor gene expression, which in turn resulted in no significant changes in macrophage migration and polarization. Therefore, the cell culture device presented here provides an excellent opportunity for researchers to reproduce the in vivo hypoxic gradients in solid tumors and to study their role in recruiting circulating cells to the tumor in specific types of cancer.

4.
Arch Bronconeumol (Engl Ed) ; 54(1): 31-38, 2018 Jan.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-29102342

RESUMO

Lung biofabrication is a new tissue engineering and regenerative development aimed at providing organs for potential use in transplantation. Lung biofabrication is based on seeding cells into an acellular organ scaffold and on culturing them in an especial purpose bioreactor. The acellular lung scaffold is obtained by decellularizing a non-transplantable donor lung by means of conventional procedures based on application of physical, enzymatic and detergent agents. To avoid immune recipient's rejection of the transplanted bioengineered lung, autologous bone marrow/adipose tissue-derived mesenchymal stem cells, lung progenitor cells or induced pluripotent stem cells are used for biofabricating the bioengineered lung. The bioreactor applies circulatory perfusion and mechanical ventilation with physiological parameters to the lung during biofabrication. These physical stimuli to the organ are translated into the stem cell local microenvironment - e.g. shear stress and cyclic stretch - so that cells sense the physiological conditions in normally functioning mature lungs. After seminal proof of concept in a rodent model was published in 2010, the hypothesis that lungs can be biofabricated is accepted and intense research efforts are being devoted to the topic. The current experimental evidence obtained so far in animal tests and in ex vivo human bioengineered lungs suggests that the date of first clinical tests, although not immediate, is coming. Lung bioengineering is a disrupting concept that poses a challenge for improving our basic science knowledge and is also an opportunity for facilitating lung transplantation in future clinical translation.


Assuntos
Pulmão , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Reatores Biológicos , Diferenciação Celular , Microambiente Celular/fisiologia , Humanos , Transplante de Pulmão , Perfusão , Medicina Regenerativa/tendências , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA