Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38664280

RESUMO

The delivery of CRISPR/Cas ribonucleoprotein (RNP) complexes is gaining attention owing to its high cleavage efficiency and reduced off-target effects. Although RNPs can be delivered into porcine zygotes via electroporation with relatively high efficiency, lipofection-mediated transfection appears to be versatile because of its ease of use, low cost, and adaptation to high-throughput systems. However, this system requires improvements in terms of embryo development and mutation rates. Therefore, this study elucidated the effects of culture methods and reagent combinations on the CRISPR/Cas9 gene editing systems by using three lipofection reagents: Lipofectamine™ CRISPRMAX™ Cas9 Transfection Reagent (CM), Lipofectamine™ 2000 Transfection Reagent (LP), and jetCRISPR™ RNP Transfection Reagent (Jet). Porcine zona pellucida-free zygotes were incubated for 5 h with Cas9, a guide RNA targeting CD163, and the above lipofection reagents. When examining the effect of culture methods using 4-well (multiple embryo culture) and 25-well plates (single embryo culture) on the efficiency of CM-mediated zygote transfection, the culture of embryos in 25-well plates significantly increased the blastocyst formation rate; however, there was no difference in mutation rates between the 4-well and 25-well plates. When assessing the effects of individual or combined reagents on the efficiency of zygote transfection, the mutation rate was significantly lower for individual LP compared to individual CM- and Jet-mediated transfections. Moreover, combinations of lipofection transfection reagents did not significantly increase the mutation rate or mutation efficiency.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38485817

RESUMO

Programmed cell death-1 (PD-1) is an immunoinhibitory receptor required to suppress inappropriate immune responses such as autoimmunity. Immune checkpoint antibodies that augment the PD-1 pathway lead to immune-related adverse events (irAEs), organ non-specific side effects due to autoimmune activation in humans. In this study, we generated a PD-1 mutant pig using electroporation-mediated introduction of the CRISPR/Cas9 system into porcine zygotes to evaluate the PD-1 gene deficiency phenotype. We optimized the efficient guide RNAs (gRNAs) targeting PD-1 in zygotes and transferred electroporated embryos with the optimized gRNAs and Cas9 into recipient gilts. One recipient gilt became pregnant and gave birth to two piglets. Sequencing analysis revealed that both piglets were biallelic mutants. At 18 mo of age, one pig showed non-purulent arthritis of the left elbow/knee joint and oligozoospermia, presumably related to PD-1 modification. Although this study has a limitation because of the small number of cases, our phenotypic analysis of PD-1 modification in pigs will provide significant insight into human medicine and PD-1-deficient pigs can be beneficial models for studying human irAEs.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38379097

RESUMO

The generation of genetically engineered pig models that develop pancreas-specific tumors has the potential to advance studies and our understanding of pancreatic cancer in humans. TP53 mutation causes organ-nonspecific cancers, and PDX1-knockout results in the loss of pancreas development. The aim of the present study was to generate a PDX1-knockout pig chimera carrying pancreas complemented by TP53 mutant cells via phytohemagglutinin (PHA)-mediated blastomere aggregation using PDX1 and TP53 mutant blastomeres, as a pig model for developing tumors in the pancreas with high frequency. First, the concentration and exposure time to PHA to achieve efficient blastomere aggregation were optimized. The results showed that using 300 µg/mL PHA for 10 min yielded the highest rates of chimeric blastocyst formation. Genotyping analysis of chimeric blastocysts derived from aggregated embryos using PDX1- and TP53-edited blastomere indicated that approximately 28.6% carried mutations in both target regions, while 14.3-21.4% carried mutations in one target. After the transfer of the chimeric blastocysts into one recipient, the recipient became pregnant with three fetuses. Deep sequencing analysis of the PDX1 and TP53 regions using ear and pancreas samples showed that one fetus carried mutations in both target genes, suggesting that the fetus was a chimera derived from embryo-aggregated PDX1 and TP53 mutant blastomeres. Two out of three fetuses carried only the PDX1 mutation, indicating that the fetuses developed from embryos not carrying TP53-edited blastomeres. The results of the present study could facilitate the further improvement and design of high-frequency developing pancreatic tumor models in pigs.

5.
Reprod Domest Anim ; 59(1): e14520, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38268205

RESUMO

Sterilization of the culture medium using ultraviolet (UV)-C reduces the potential adverse effects of microorganisms and allows for long-term use. In the present study, we investigated the effects of a medium directly irradiated with UV-C prior to in vitro culture on the development and quality of porcine in vitro-fertilized embryos and the free amino acid composition of the culture media. The culture media (porcine zygote medium [PZM-5] and porcine blastocyst medium [PBM]) were irradiated with UV-C at 228 and 260 nm for 1 and 3 days, respectively. Next, the culture media were irradiated with UV-C at 228 nm for 3, 7, or 14 days. After in vitro fertilization, the embryos were cultured in the UV-C-irradiated media for 7 days. Free amino acid levels in culture media irradiated with 228 and 260 nm UV-C for 3 days were analysed. The blastocyst formation rate of embryos cultured in media irradiated with 260 nm UV-C for 3 days was significantly lower than that of embryos cultured in non-irradiated control media. However, 228 nm UV-C irradiation for up to 14 days did not affect blastocyst formation rates and quality in the resulting blastocysts. Moreover, 260 nm UV-C irradiation significantly increased the taurine concentration in both culture media and decreased methionine concentration in the PBM. In conclusion, UV-C irradiation at 228 nm before in vitro culture had no detrimental effects on embryonic development. However, 260 nm UV-C irradiation decreased embryo development and altered the composition of free amino acids in the medium.


Assuntos
Aminoácidos , Desenvolvimento Embrionário , Animais , Feminino , Gravidez , Suínos , Zigoto , Fertilização in vitro/veterinária , Meios de Cultura
6.
Acta Vet Hung ; 71(3-4): 219-222, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193983

RESUMO

This study examined the effects of ergothioneine (EGT) supplementation as an antioxidant on the quality of boar spermatozoa when using liquid and frozen preservation methods. In the first experiment, boar semen was preserved in an extender supplemented with 0, 50, 100 and 200 µM EGT, at 15 °C, part of the samples for one and another part for three weeks. In comparison with the control (without EGT), EGT supplementation at 100 µM significantly increased the percentage of total motility of spermatozoa that were preserved as a liquid both for one and three weeks (P < 0.05). EGT supplementation did not affect the quality of preserved spermatozoa, irrespective of the EGT concentration. In the second experiment, semen was frozen and thawed in the freezing extender supplemented with 0, 50, 100 and 200 µM EGT. In comparison with the control, the 100 µM EGT supplementation significantly increased the percentages of total and progressive motility of frozen-thawed spermatozoa (P < 0.05). EGT (100 µM) supplementation did not affect the viability, the plasma membrane integrity, or the acrosomal integrity of frozen-thawed spermatozoa. These findings indicate that supplementing extenders with 100 µM EGT may improve the motility of boar sperm in both liquid and freezing preservation methods.


Assuntos
Ergotioneína , Masculino , Suínos , Animais , Ergotioneína/farmacologia , Sêmen , Suplementos Nutricionais , Antioxidantes/farmacologia , Espermatozoides
7.
Xenotransplantation ; 31(1): e12831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37846880

RESUMO

BACKGROUND: Porcine tissues display a great potential as donor tissues in xenotransplantation, including cell therapy. Cryopreserving clinical grade porcine tissue and using it as a source for establishing therapeutic cells should be advantageous for transportation and scheduled manufacturing of MSCs. Of note, we previously performed encapsulated porcine islet transplantation for the treatment of unstable type 1 diabetes mellitus in the clinical setting. It has been reported that co-transplantation of islets and Mesenchymal stem cells (MSCs) enhanced efficacy. We assume that co-transplantation of porcine islets and porcine islet-derived MSCs could improve the efficacy of clinical islet xenotransplantation. METHODS: MSCs were established from fresh and cryopreserved non-clinical grade neonatal porcine islets and bone marrow (termed non-clinical grade npISLET-MSCs and npBM-MSCs, respectively), as well as from cryopreserved clinical grade neonatal porcine islets (termed clinical grade npISLET-MSCs). Subsequently, the cell proliferation rate and diameter, surface marker expression, adipogenesis, osteogenesis, and colony-forming efficiency of the MSCs were assessed. RESULTS: Cell proliferation rate and diameter did not differ between clinical grade and non-clinical grade npISLET-MSCs. However, non-clinical grade npBM-MSCs were significantly shorter and smaller than both npISLET-MSCs (p < 0.05). MSC markers (CD29, CD44, and CD90) were strongly expressed in clinical grade npISLET-MSCs and non-clinical grade npISLET-MSCs and npBM-MSCs. The expression of MSC-negative markers CD31, CD34, and SLA-DR was low in all MSCs. Clinical grade npISLET-MSCs derived from adipose and osteoid tissues were positive for Oil Red and alkaline phosphatase staining. The results of colony-forming assay were not significantly different between clinical grade npISLET-MSCs and non-clinical grade npBM-MSCs. CONCLUSION: The method described herein was successful in of developing clinical grade npISLET-MSCs from cryopreserved islets. Cryopreserved clinical grade porcine islets could be an excellent stable source of MSCs for cell therapy.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Suínos , Animais , Transplante Heterólogo/métodos , Transplante das Ilhotas Pancreáticas/métodos , Diabetes Mellitus Tipo 1/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos
8.
Anim Reprod Sci ; 260: 107386, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056176

RESUMO

This study aimed to assess the potential of the centrifuge-free commercial device (MIGLIS®) in selecting functional frozen-thawed bovine sperm by migration-sedimentation, its effect on embryo development, and compare the potential with that of centrifugation-based techniques, including washing and Percoll density gradient centrifugation (DGC). In experiment 1, different dilutions (1.5×, 2×, and 3×) of frozen-thawed spermatozoa were assessed to identify the adequate one for the MIGLIS method. In experiment 2, the recovery rates, quality, and reactive oxygen species (ROS) concentrations of the spermatozoa selected using MIGLIS, washing, and Percoll DGC were compared. In experiment 3, the resultant in vitro fertilised embryos from spermatozoa selected using the three methods were evaluated for blastocyst formation rates and intracellular ROS concentrations at the 2-4 cell stage. The intracellular ROS concentrations were investigated using 2', 7'-dichlorodihydrofluorescein diacetate staining. Using the MIGLIS device, significantly more spermatozoa were recovered at 2× dilution compared with the other dilution ratio, but the motility was not affected by the dilution ratio. On the selection of spermatozoa using the three methods, employing MIGLIS decreased the recovery rates. However, the MIGLIS method increased motility, viability, and acrosome integrity rates compared to those in spermatozoa from the other methods. The ROS concentration of spermatozoa in the MIGLIS method was significantly lower than that in the washing method. Nevertheless, blastocyst formation rates were similar among the three methods, but the ROS concentration of early-stage embryos produced using MIGLIS was significantly lower than those produced using Percoll DGC. In conclusion, the MIGLIS method has the potential to select functional, high-quality frozen-thawed bovine spermatozoa.


Assuntos
Preservação do Sêmen , Sêmen , Masculino , Animais , Bovinos , Espécies Reativas de Oxigênio , Criopreservação/veterinária , Criopreservação/métodos , Motilidade dos Espermatozoides , Espermatozoides , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Centrifugação/veterinária
9.
Anim Sci J ; 94(1): e13878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818780

RESUMO

The transfection efficiency of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas ribonucleoprotein complexes was compared using three nonviral vector transfection reagents: nonliposomal polymeric (TransIT-X2), lipid nanoparticle delivery (CRISPRMAX), and peptide (ProteoCarry) systems. Porcine zona pellucida-free zygotes and embryos were incubated for 5 h with CRISPR-associated protein 9 (Cas9), guide RNA (gRNA) targeting GGTA1, and one of the reagents. In Experiment 1, optimization of Cas9 protein to gRNA molar ratios of 1:2, 2:2, and 4:2, along with single or double doses of reagents, was performed on zygotes at 10 h post-in vitro fertilization. In Experiment 2, optimization of timing was performed at 10 or 29 h post-in vitro fertilization, using optimal molar ratios and reagent doses. Blastocyst formation, mutation rates, and mutation efficiency were measured in each experiment. For each reagent, a 4:2 Cas9:gRNA molar ratio and addition of a double reagent dose exhibited a higher mutation rate; however, blastocyst rate tended to decrease compared with that of control. Moreover, the optimal transfection time varied depending on the reagent, and the proportions of blastocysts carrying mutations were <34%. In conclusion, the above three transfectants allowed gene editing of porcine zygotes and embryos; however, this newly established chemistry-based technology needs further improvement, especially regarding editing efficiency and embryo development.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Suínos/genética , Animais , Edição de Genes/veterinária , Proteína 9 Associada à CRISPR/genética , Zigoto , Desenvolvimento Embrionário
10.
Toxicol In Vitro ; 93: 105689, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37660998

RESUMO

Bilirubin is excreted into the bile from hepatocytes, mainly as monoglucuronosyl and bisglucuronosyl conjugates, reflecting bilirubin glucuronidation activity. However, there is limited information on the in vitro evaluation of liver cell lines or primary hepatocytes. This study aimed to investigate variations in the bilirubin metabolic function of canine and human hepatocyte spheroids formed in a three-dimensional (3D) culture system indicated by the formation of bilirubin glucuronides when protease inhibitors such as atazanavir, indinavir, ritonavir, and nelfinavir were treated with bilirubin. The culture supernatant was collected for bilirubin glucuronidation assessment and the cells were used to evaluate viability. On day 8 of culture, both canine and human hepatocyte spheroids showed high albumin secretion and distinct spheroid formation, and their bilirubin glucuronidation activities were evaluated considering cell viability. Treatment with atazanavir and ritonavir remarkably inhibited bilirubin glucuronide formation, wherein atazanavir showed the highest inhibition, particularly in human hepatocyte spheroids. These results may reflect the effects on cellular uptake of bilirubin and its intracellular metabolic function. Thus, primary hepatocytes cultured in a 3D culture system may be a useful in vitro system for the comprehensive evaluation of bilirubin metabolic function and risk assessment in bilirubin metabolic disorders for drug development.


Assuntos
Hepatócitos , Inibidores de Proteases , Humanos , Animais , Cães , Sulfato de Atazanavir/metabolismo , Sulfato de Atazanavir/farmacologia , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Bilirrubina/metabolismo , Bilirrubina/farmacologia , Fígado/metabolismo , Ritonavir/farmacologia , Ritonavir/metabolismo , Esferoides Celulares/metabolismo
11.
Vet Med Int ; 2023: 7000858, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609627

RESUMO

Pigs rarely develop cancer; however, tumour protein p53 (TP53)-modified pigs may have an increased incidence of cancer. In this study, two pigs with mosaic mutations induced by gene editing were compared to determine the role of the wild-type TP53 sequence in tumorigenesis and to speculate how amino acid changes in TP53 sequences are related to tumorigenesis. The pig without tumours had a wild-type TP53 sequence and a 1-bp deletion in the TP53 sequence that resulted in a premature stop codon. In contrast, the pig with nephroblastoma had 6- and 7-bp deletions in the TP53 sequence, resulting in the absence of two amino acids and a premature stop codon, respectively. Our results indicated that TP53 mutations with truncated amino acids may be related to tumour formation.

12.
Regen Ther ; 24: 25-31, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37303463

RESUMO

Introduction: This study investigated the storage conditions under which cell aggregation occurs and the conditions that inhibit cell aggregation when human adipose tissue-derived mesenchymal stem cells (hADSCs) are stored in lactated Ringer's solution (LR) supplemented with 3% trehalose and 5% dextran 40 (LR-3T-5D). Methods: We first examined the effects of storage temperature and time on the aggregation and viability of hADSCs stored in LR and LR-3T-5D. The cells were stored at 5 °C or 25 °C for various times up to 24 h. We then evaluated the effects of storage volume (250-2,000 µL), cell density (2.5-20 × 105 cells/mL), and nitrogen gas replacement on aggregation, oxygen partial pressure (pO2), and viability of hADSCs stored for 24 h at 25 °C in LR-3T-5D. Results: When stored in LR-3T-5D, viability did not change under either condition compared with pre-storage, but the cell aggregation rate increased significantly with storage at 25 °C for 24 h (p<0.001). In LR, the aggregation rate did not change under either condition, but cell viability decreased significantly after 24 h at both 5 °C and 25 °C (p < 0.05). The cell aggregation rates and pO2 tended to decrease with increasing solution volume and cell density. Nitrogen gas replacement significantly decreased the cell aggregation rate and pO2 (p < 0.05). However, there were no differences in viability among cells stored under conditions of different storage volumes, densities, and nitrogen gas replacement. Conclusions: Aggregation of cells after storage at 25 °C in LR-3T-5D may be suppressed by increasing the storage volume and cell density as well as by incorporating nitrogen replacement, which lowers the pO2 in the solution.

13.
Anim Sci J ; 94(1): e13842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37218074

RESUMO

Genetic mosaicism is considered one of the main limitations of the electroporation method used to transfer CRISPR-Cas9/guide RNA (gRNA) into porcine zygotes. We hypothesized that fertilization of oocytes with sperm from gene-deficient boars, in combination with electroporation (EP) to target the same region of the gene in subsequent zygotes, would increase the gene modification efficiency. As myostatin (MSTN) and α1,3-galactosyltransferase (GGTA1) have beneficial effects on agricultural production and xenotransplantation, respectively, we used these two genes to test our hypothesis. Spermatozoa from gene-knockout boars were used for oocyte fertilization in combination with EP to transfer gRNAs targeting the same gene region to zygotes. No significant differences in the rates of cleavage and blastocyst formation as well as in the mutation rates of blastocysts were observed between the wild-type and gene-deficient spermatozoa groups, irrespective of the targeted gene. In conclusion, the combination of fertilization with gene-deficient spermatozoa and gene editing of the same targeted gene region using EP had no beneficial effects on embryo genetic modification, indicating that EP alone is a sufficient tool for genome modification.


Assuntos
Edição de Genes , Zigoto , Masculino , Animais , Suínos , Edição de Genes/veterinária , Sistemas CRISPR-Cas , Sêmen , Eletroporação/veterinária , RNA Guia de Sistemas CRISPR-Cas
14.
Mol Biol Rep ; 50(6): 5049-5057, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37101010

RESUMO

BACKGROUND: Pigs are excellent large animal models with several similarities to humans. They provide valuable insights into biomedical research that are otherwise difficult to obtain from rodent models. However, even if miniature pig strains are used, their large stature compared with other experimental animals requires a specific maintenance facility which greatly limits their usage as animal models. Deficiency of growth hormone receptor (GHR) function causes small stature phenotypes. The establishment of miniature pig strains via GHR modification will enhance their usage as animal models. Microminipig is an incredibly small miniature pig strain developed in Japan. In this study, we generated a GHR mutant pig using electroporation-mediated introduction of the CRISPR/Cas9 system into porcine zygotes derived from domestic porcine oocytes and microminipig spermatozoa. METHODS AND RESULTS: First, we optimized the efficiency of five guide RNAs (gRNAs) designed to target GHR in zygotes. Embryos that had been electroporated with the optimized gRNAs and Cas9 were then transferred into recipient gilts. After embryo transfer, 10 piglets were delivered, and one carried a biallelic mutation in the GHR target region. The GHR biallelic mutant showed a remarkable growth-retardation phenotype. Furthermore, we obtained F1 pigs derived from the mating of GHR biallelic mutant with wild-type microminipig, and GHR biallelic mutant F2 pigs through sib-mating of F1 pigs. CONCLUSIONS: We have successfully demonstrated the generation of biallelic GHR-mutant small-stature pigs. Backcrossing of GHR-deficient pig with microminipig will establish the smallest pig strain which can contribute significantly to the field of biomedical research.


Assuntos
Sistemas CRISPR-Cas , Zigoto , Masculino , Humanos , Suínos/genética , Animais , Feminino , Sistemas CRISPR-Cas/genética , Receptores da Somatotropina/genética , Porco Miniatura , Oócitos
15.
Vet Med Int ; 2023: 5702970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101560

RESUMO

The aim of this study was to improve the production efficiency of Vietnamese native Ban pig embryos using somatic cell nuclear transfer (SCNT). Fibroblast cells from Ban pigs were injected into the enucleated cytoplasts of crossbred gilts, and the reconstructed embryos were subsequently cultured. In the first experiment, cytoplasts were isolated from oocytes matured in either a defined porcine oocyte medium (POM) or in TCM199 medium supplemented with porcine follicular fluid. Both media were supplemented with gonadotropic hormones, either for the first 22 h of in vitro maturation (IVM) or for the entire 44 h of IVM. In the second experiment, the reconstructed SCNT embryos were cultured with or without 50 µM chlorogenic acid (CGA). Furthermore, this study examined parthenogenetic embryos. The IVM medium and duration of hormone treatment did not affect embryo development. CGA supplementation to the culture medium significantly increased blastocyst formation rates in parthenogenetic embryos but not in SCNT embryos. However, CGA supplementation significantly reduced the apoptotic index in blastocysts regardless of embryo source. In conclusion, the IVM method did not affect SCNT embryo production, while CGA supplementation during embryo culture improved the quality of SCNT embryos in indigenous pig breeds.

16.
Reprod Domest Anim ; 58(6): 882-887, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081592

RESUMO

It is important to prevent microbial contamination during liquid preservation of semen in pigs. We examined the effects of curcumin supplementation on the quality of porcine spermatozoa irradiated with ultraviolet-C (UV-C) at 228 nm. UV-C is used to disinfect gases and solid surfaces. In the first experiment, porcine semen was preserved with 0, 10, 25, 50 or 100 µM curcumin under UV-C irradiation at 228 nm for 7 days at 15°C. The irradiation did not affect the motility and viability of preserved spermatozoa but decreased the percentage of plasma membrane integrity of spermatozoa. Curcumin supplementation at 25 µM significantly improved the plasma membrane and acrosome integrity of irradiated spermatozoa compared with spermatozoa preserved without curcumin (p < .05). In the second experiment, semen was preserved with or without 25 µM curcumin with UV-C irradiation at 228 or 260 nm for 3 days at 15°C. Curcumin supplementation increased the percentages of total motility, sperm viability and plasma membrane integrity of preserved spermatozoa at both irradiation wavelengths (p < .05). All quality parameters of 260 nm irradiated spermatozoa decreased compared to those of the other groups, irrespective of curcumin supplementation. The collective findings indicate that porcine spermatozoa can retain their viability even after continuous long-duration irradiation with 228 nm UV-C. Curcumin supplementation improves the quality of UV-C irradiated spermatozoa during semen preservation.


Assuntos
Curcumina , Preservação do Sêmen , Suínos , Masculino , Animais , Sêmen , Curcumina/farmacologia , Espermatozoides , Acrossomo , Análise do Sêmen/veterinária , Preservação do Sêmen/veterinária , Suplementos Nutricionais , Motilidade dos Espermatozoides
17.
Methods Mol Biol ; 2637: 293-300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36773155

RESUMO

Pigs are excellent large animal models owing to their several physiological and anatomical similarities to humans. Somatic cell nuclear transfer using gene-modified cells is the mainstream approach for generating genetically modified pigs. Recent advances in improving gene editors such as the CRISPR/Cas9 system have enabled direct gene modification in zygotes/embryos. Here, we describe the gene editing by electroporation of Cas9 protein (GEEP) method, an optimized electroporation-mediated method for the introduction of CRISPR/Cas9 into porcine zygotes/embryos. The simplicity and micromanipulation-free procedures are the major advantages of this method.


Assuntos
Proteína 9 Associada à CRISPR , Edição de Genes , Humanos , Animais , Suínos/genética , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Mutação , Zigoto/metabolismo , Eletroporação/métodos
18.
Front Cell Dev Biol ; 11: 884340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36711037

RESUMO

Just one amino acid at the carboxy-terminus of the B chain distinguishes human insulin from porcine insulin. By introducing a precise point mutation into the porcine insulin (INS) gene, we were able to generate genetically modified pigs that secreted human insulin; these pigs may be suitable donors for islet xenotransplantation. The electroporation of the CRISPR/Cas9 gene-editing system into zygotes is frequently used to establish genetically modified rodents, as it requires less time and no micromanipulation. However, electroporation has not been used to generate point-mutated pigs yet. In the present study, we introduced a point mutation into porcine zygotes via electroporation using the CRISPR/Cas9 system to generate INS point-mutated pigs as suitable islet donors. We first optimized the efficiency of introducing point mutations by evaluating the effect of Scr7 and the homology arm length of ssODN on improving homology-directed repair-mediated gene modification. Subsequently, we prepared electroporated zygotes under optimized conditions and transferred them to recipient gilts. Two recipients became pregnant and delivered five piglets. Three of the five piglets carried only the biallelic frame-shift mutation in the INS gene, whereas the other two successfully carried the desired point mutation. One of the two pigs mated with a WT boar, and this desired point mutation was successfully inherited in the next F1 generation. In conclusion, we successfully established genetically engineered pigs with the desired point mutation via electroporation-mediated introduction of the CRISPR/Cas9 system into zygotes, thereby avoiding the time-consuming and complicated micromanipulation method.

19.
Theriogenology ; 197: 252-258, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36525864

RESUMO

It is important to prevent contamination inside the incubator as a method of preventing microbial infections during the embryo culture. In the present study, we examined the effects of ultraviolet-C (UV-C) irradiation, used for microorganism inactivation, on embryo development and the growth of bacteria, including Escherichia coli and Staphylococcus aureus, and the fungus Cladosporium cladosporioides. In the embryo irradiation experiment, we examined the effects of the plastic lid of the culture dish, irradiation distances (10, 20, and 25 cm), and different irradiation wavelengths (228 and 260 nm) during embryo culture for 7 days on the development and quality of porcine in vitro-fertilized embryos. None of the embryos cultured in dishes without plastic lids developed into blastocysts after irradiation with 228 nm UV-C. When porcine embryos were cultured in a culture dish with lids, the 228 nm UV-C irradiation decreased blastocyst formation rates of the embryos but not their quality, irrespective of the UV-C irradiation distance. Moreover, irradiation with 260 nm UV-C, even with plastic lids, had more detrimental effects on embryo development than irradiation with 228 nm UV-C. Investigation of the inactivating effects of UV-C irradiation at 228 nm and 260 nm on the growth of the bacteria and fungus showed that 260 nm UV-C reduced the viability to a greater extent than 228 nm UV-C. Moreover, the disinfection efficacy for the bacteria increased when the irradiation duration increased and the distance decreased. In conclusion, porcine embryos can develop into blastocysts without loss of quality even after continuous long-duration irradiation (7 days) with 228 nm UV-C, which can inactivate the growth of bacteria and the tested fungus; however, the development rate of the embryo is reduced.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Animais , Suínos , Desenvolvimento Embrionário/fisiologia , Blastocisto/fisiologia , Embrião de Mamíferos , Fertilização in vitro/veterinária , Escherichia coli , Bactérias , Raios Ultravioleta
20.
Vet World ; 15(9): 2210-2216, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36341066

RESUMO

Background and Aim: Mosaicism - the presence of both wild-type and mutant alleles - is a serious problem for zygotic gene modification through gene editing using the Clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR/Cas9) system. Different delivery methods, such as microinjection (MI), electroporation (EP), and transfection (TF), can be used to transfer CRISPR/Cas9 components into porcine zygotes. This study aimed to develop a method that combines MI, EP, and TF to improve mutation efficiency mediated through the CRISPR/Cas9 system for a triple-gene knockout in pigs. Materials and Methods: The study consisted of three groups: The MI group with three simultaneously microinjected guide RNAs (gRNAs) targeting α-1,3-galactosyltransferase (GGTA1), cytidine 32 monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), and ß-1,4-N-acetyl-galactosaminyltransferase 2 (B4GALNT2); the MI + EP group with two gRNAs targeting GGTA1 and B4GALNT2 genes delivered into zygotes through MI, followed by EP of gRNA targeting the CMAH 1 h later; and the MI + EP + TF group with MI of gRNA targeting GGTA1 gene into zygotes, followed by EP of gRNA targeting CMAH 1 h later, and then TF of gRNA targeting the B4GALNT2 gene into zona-free zygotes after another hour. Results: The rate of blastocysts carrying mutations in one or two gene(s) was significantly higher in the MI + EP + TF group than in the MI group. However, the blastocyst formation rate of zygotes in the MI + EP + TF group was lower than that of the zygotes in the other treatment groups. Conclusion: The combination of CRISPR/Cas9 delivery methods may improve the mutation efficiency of triple-gene edited porcine blastocysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA