Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 175(4): e13957, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37338180

RESUMO

In floral thermogenesis, sugars play an important role not only as energy providers but also as growth and development facilitators. Yet, the mechanisms underlying sugar translocation and transport in thermogenic plants remain to be studied. Asian skunk cabbage (Symplocarpus renifolius) is a species that can produce durable and intense heat in its reproductive organ, the spadix. Significant morphological and developmental changes in the stamen are well-characterized in this plant. In this study, we focused on the sugar transporters (STPs), SrSTP1 and SrSTP14, whose genes were identified by RNA-seq as the upregulated STPs during thermogenesis. Real-time PCR confirmed that mRNA expression of both STP genes was increased from the pre-thermogenic to the thermogenic stage in the spadix, where it is predominantly expressed in the stamen. SrSTP1 and SrSTP14 complemented the growth defects of a hexose transporter-deficient yeast strain, EBY4000, on media containing 0.02, 0.2, and 2% (w/v) glucose and galactose. Using a recently developed transient expression system in skunk cabbage leaf protoplasts, we revealed that SrSTP1 and SrSTP14-GFP fusion proteins were mainly localized to the plasma membrane. To dig further into the functional analysis of SrSTPs, tissue-specific localization of SrSTPs was investigated by in situ hybridization. Using probes for SrSTP14, mRNA expression was observed in the microspores within the developing anther at the thermogenic female stage. These results indicate that SrSTP1 and SrSTP14 transport hexoses (e.g., glucose and galactose) at the plasma membrane and suggest that SrSTP14 may play a role in pollen development through the uptake of hexoses into pollen precursor cells.


Assuntos
Araceae , Galactose/metabolismo , Pólen/genética , Pólen/metabolismo , Glucose/metabolismo , Termogênese , RNA Mensageiro/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Cell Rep ; 41(1): 263-275, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34704119

RESUMO

KEY MESSAGE: Floral thermogenesis is an important reproductive strategy for attracting pollinators. We developed essential biological tools for studying floral thermogenesis using two species of thermogenic aroids, Symplocarpus renifolius and Alocasia odora. Aroids contain many species with intense heat-producing abilities in their inflorescences. Several genes have been proposed to be involved in thermogenesis of these species, but biological tools for gene functional analyses are lacking. In this study, we aimed to develop a protoplast-based transient expression (PTE) system for the study of thermogenic aroids. Initially, we focused on skunk cabbage (Symplocarpus renifolius) because of its ability to produce intense as well as durable heat. In this plant, leaf protoplasts were isolated from potted and shoot tip-cultured plants with high efficiency (ca. 1.0 × 105/g fresh weight), and more than half of these protoplasts were successfully transfected. Using this PTE system, we determined the protein localization of three mitochondrial energy-dissipating proteins, SrAOX, SrUCPA, and SrNDA1, fused to green fluorescent protein (GFP). These three GFP-fused proteins were localized in MitoTracker-stained mitochondria in leaf protoplasts, although the green fluorescent particles in protoplasts expressing SrUCPA-GFP were significantly enlarged. Finally, to assess whether the PTE system established in the leaves of S. renifolius is applicable for floral tissues of thermogenic aroids, inflorescences of S. renifolius and another thermogenic aroid (Alocasia odora) were used. Although protoplasts were successfully isolated from several tissues of the inflorescences, PTE systems worked well only for the protoplasts isolated from the female parts (slightly thermogenic or nonthermogenic) of A. odora inflorescences. Our developed system has a potential to be widely used in inflorescences as well as leaves in thermogenic aroids and therefore may be a useful biological tool for investigating floral thermogenesis.


Assuntos
Alocasia/fisiologia , Araceae/fisiologia , Botânica/métodos , Flores/fisiologia , Protoplastos/metabolismo , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA