Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurobiol Learn Mem ; 107: 1-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24176925

RESUMO

The pond snail Lymnaea stagnalis is capable of being classically conditioned to avoid food and to consolidate this aversion into a long-term memory (LTM). Previous studies have shown that the length of food deprivation is important for both the acquisition of taste aversion and its consolidation into LTM, which is referred to as conditioned taste aversion (CTA). Here we tested the hypothesis that the hemolymph glucose concentration is an important factor in the learning and memory of CTA. One-day food deprivation resulted in the best learning and memory, whereas more prolonged food deprivation had diminishing effects. Five-day food deprivation resulted in snails incapable of learning or remembering. During this food deprivation period, the hemolymph glucose concentration decreased. If snails were fed for 2days following the 5-day food deprivation, their glucose levels increased significantly and they exhibited both learning and memory, but neither learning nor memory was as good as with the 1-day food-deprived snails. Injection of the snails with insulin to reduce glucose levels resulted in better learning and memory. Insulin is also known to cause a long-term enhancement of synaptic transmission between the feeding-related neurons. On the other hand, injection of glucose into 5-day food-deprived snails did not alter their inability to learn and remember. However, if these snails were fed on sucrose for 3min, they then exhibited learning and memory formation. Our data suggest that hemolymph glucose concentration is an important factor in motivating acquisition of CTA in Lymnaea and that the action of insulin in the brain and the feeding behavior are also important factors.


Assuntos
Aprendizagem da Esquiva/fisiologia , Condicionamento Clássico/fisiologia , Privação de Alimentos/fisiologia , Motivação/fisiologia , Paladar/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Glicemia/análise , Glucose/farmacologia , Hemolinfa/química , Lymnaea , Memória/efeitos dos fármacos , Memória/fisiologia , Sacarose/farmacologia
2.
Commun Integr Biol ; 6(3): e23955, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23710281

RESUMO

The pond snail Lymnaea stagnalis learns taste aversion and consolidates it into long-term memory (LTM). This is referred to as conditioned taste aversion (CTA). The superfusion of molluscan insulin-related peptides (MIPs) over the isolated snail brain causes a long-term enhancement of synaptic input between the cerebral giant cell and the B1 buccal motor neuron. This enhancement is hypothesized to underlie CTA. The synaptic enhancement caused by the superfusion of MIPs can be blocked by the application of human insulin receptor antibody, which recognizes the extracellular domain of human insulin receptor and acts as an antagonist even for MIP receptors. An injection of the human insulin receptor antibody into the abdominal cavity of trained snails blocks the consolidation process leading to LTM, even though the snails acquire taste aversion. Here, we examined whether or not taste-aversion training changes the mRNA expression level of MIP receptor in the snail brain and found that it does not. This result, taken together with previous findings, suggest that the MIPs' effect on synaptic function in the snail brain is attributable to a change in the MIP concentration, and not to a change in the mRNA expression level of MIP receptor, which is thought to reflect the number of MIP receptors.

3.
J Neurosci ; 33(1): 371-83, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23283349

RESUMO

The pond snail Lymnaea stagnalis is capable of learning taste aversion and consolidating this learning into long-term memory (LTM) that is called conditioned taste aversion (CTA). Previous studies showed that some molluscan insulin-related peptides (MIPs) were upregulated in snails exhibiting CTA. We thus hypothesized that MIPs play an important role in neurons underlying the CTA-LTM consolidation process. To examine this hypothesis, we first observed the distribution of MIP II, a major peptide of MIPs, and MIP receptor and determined the amounts of their mRNAs in the CNS. MIP II was only observed in the light green cells in the cerebral ganglia, but the MIP receptor was distributed throughout the entire CNS, including the buccal ganglia. Next, when we applied exogenous mammalian insulin, secretions from MIP-containing cells or partially purified MIPs, to the isolated CNS, we observed a long-term change in synaptic efficacy (i.e., enhancement) of the synaptic connection between the cerebral giant cell (a key interneuron for CTA) and the B1 motor neuron (a buccal motor neuron). This synaptic enhancement was blocked by application of an insulin receptor antibody to the isolated CNS. Finally, injection of the insulin receptor antibody into the snail before CTA training, while not blocking the acquisition of taste aversion learning, blocked the memory consolidation process; thus, LTM was not observed. These data suggest that MIPs trigger changes in synaptic connectivity that may be correlated with the consolidation of taste aversion learning into CTA-LTM in the Lymnaea CNS.


Assuntos
Lymnaea/fisiologia , Memória de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Neuropeptídeos/metabolismo , Sinapses/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Insulina/farmacologia , Lymnaea/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neuropeptídeos/genética , Sinapses/efeitos dos fármacos , Paladar/efeitos dos fármacos , Paladar/fisiologia
4.
Biophysics (Nagoya-shi) ; 9: 161-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-27493554

RESUMO

Conditioned taste aversion (CTA) can be classically conditioned in the pond snail Lymnaea stagnalis and subsequently be consolidated into long-term memory (LTM). The neural trace that subserves CTA-LTM can be summarized as follows: A polysynaptic inhibitory postsynaptic potential recorded in the neuron 1 medial (N1M) cell in the conditioned snails as a result of activation of the cerebral giant cell (CGC) is larger and lasts longer than that in control snails. The N1M cell is ultimately activated by the CGC via the neuron 3 tonic (N3t) cell. That is, the inhibitory monosynaptic inputs from the N3t cell to the N1M cell are facilitated. The N1M and N3t cells are the members of feeding central pattern generator, whereas the CGC is a multimodal interneuron thought to play a key role in feeding behavior. Here we examined the involvement of a second messenger, cAMP, in the establishment of the memory trace. We injected cAMP into the CGC and monitored the potentials of the B3 motor neuron activated by the CGC. B3 activity is used as an index for the synaptic inputs from the N3t cell to the N1M cell. We found that the B3 potentials were transiently enlarged. Thus, when the cAMP concentration is increased in the CGC by taste aversion training, cAMP-induced changes may play a key role in the establishment of a memory trace in the N3t cell.

5.
PLoS One ; 7(8): e43151, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22900097

RESUMO

BACKGROUND: The pond snail Lymnaea stagnalis can maintain a conditioned taste aversion (CTA) as a long-term memory. Previous studies have shown that the inhibitory postsynaptic potential (IPSP) evoked in the neuron 1 medial (N1M) cell by activation of the cerebral giant cell (CGC) in taste aversion-trained snails was larger and lasted longer than that in control snails. The N1M cell is one of the interneurons in the feeding central pattern generator (CPG), and the CGC is a key regulatory neuron for the feeding CPG. METHODOLOGY/PRINCIPLE FINDINGS: Previous studies have suggested that the neural circuit between the CGC and the N1M cell consists of two synaptic connections: (1) the excitatory connection from the CGC to the neuron 3 tonic (N3t) cell and (2) the inhibitory connection from the N3t cell to the N1M cell. However, because the N3t cell is too small to access consistently by electrophysiological methods, in the present study the synaptic inputs from the CGC to the N3t cell and those from the N3t cell to the N1M cell were monitored as the monosynaptic excitatory postsynaptic potential (EPSP) recorded in the large B1 and B3 motor neurons, respectively. The evoked monosynaptic EPSPs of the B1 motor neurons in the brains isolated from the taste aversion-trained snails were identical to those in the control snails, whereas the spontaneous monosynaptic EPSPs of the B3 motor neurons were significantly enlarged. CONCLUSION/SIGNIFICANCE: These results suggest that, after taste aversion training, the monosynaptic inputs from the N3t cell to the following neurons including the N1M cell are specifically facilitated. That is, one of the memory traces for taste aversion remains as an increase in neurotransmitter released from the N3t cell. We thus conclude that the N3t cell suppresses the N1M cell in the feeding CPG, in response to the conditioned stimulus in Lymnaea CTA.


Assuntos
Condicionamento Clássico , Comportamento Alimentar , Lymnaea/fisiologia , Memória de Longo Prazo , Paladar/fisiologia , Animais , Geradores de Padrão Central , Potenciais Pós-Sinápticos Excitadores/fisiologia , Aprendizagem , Neurônios Motores/fisiologia , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA