Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosystems ; 237: 105152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346553

RESUMO

Alanyl-tRNA synthetase (AlaRS) incorrectly recognizes both a slightly smaller glycine and a slightly larger serine in addition to alanine, and the probability of incorrect identification is extremely low at 1/300 and 1/170, respectively. Alanine is the second smallest amino acid after glycine; however, the mechanism by which AlaRS specifically identifies small differences in side chains with high accuracy remains unknown. In this study, using a malachite green assay, we aimed to elucidate the alanine recognition mechanism of a fragment (AlaRS368N) containing only the amino acid activation domain of Escherichia coli AlaRS. This method quantifies monophosphate by decomposing pyrophosphate generated during aminoacyl-AMP production. AlaRS368N produced far more pyrophosphate when glycine or serine was used as a substrate than when alanine was used. Among several mutants tested, an AlaRS mutant in which the widely conserved aspartic acid at the 235th position (D235) near the active center was replaced with glutamic acid (D235E) increased pyrophosphate release for the alanine substrate, compared to that from glycine and serine. These results suggested that D235 is optimal for AlaRS to specifically recognize alanine. Alanylation activities of an RNA minihelix by the mutants of valine at the 214th position (V214) of another fragment (AlaRS442N), which is the smallest AlaRS with alanine charging activity, suggest the existence of the van der Waals-like interaction between the side chain of V214 and the methyl group of the alanine substrate.


Assuntos
Alanina-tRNA Ligase , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/metabolismo , Alanina/genética , Alanina/metabolismo , Difosfatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoácidos/metabolismo , Glicina , Serina/genética , Serina/metabolismo
2.
Biosystems ; 208: 104481, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34245865

RESUMO

The Rodin-Ohno hypothesis postulates that two classes of aminoacyl-tRNA synthetases were encoded complementary to double-stranded DNA. Particularly, Geobacillus stearothermophilus tryptophanyl-tRNA synthetase (TrpRS, belonging to class I) and Escherichia coli histidyl-tRNA synthetase (HisRS, belonging to class II) show high complementarity of the middle base of the codons in the mRNA sequence encoding each ATP binding site. Here, for the reported 46-residue peptides designed from the three-dimensional structures of TrpRS and HisRS, amino acid activation analysis was performed using the malachite green assay, which detects the pyrophosphate departing from ATP in the forward reaction of the first step of tRNA aminoacylation. A maltose-binding protein fusion with the 46 residues of TrpRS (TrpRS46mer) exhibited high activation capacity for several amino acids in the presence of ATP and amino acids, but the activity of an alanine substitution mutant of the first histidine in the HIGH motif (TrpRS46merH15A) was largely reduced. In contrast, pyrophosphate release by HisRS46mer in the histidine activation step was lower than that in the case of TrpRS46mer. Both HisRS46mer and the alanine mutant at the 113th arginine (HisRS46merR113A) showed slightly higher levels of pyrophosphate release than the maltose-binding protein alone. These results do not rule out the Rodin-Ohno hypothesis, but may suggest the necessity of establishing unique evolutionary models from different perspectives.


Assuntos
Aminoácidos/química , Aminoácidos/genética , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Corantes de Rosanilina/química , Sequência de Aminoácidos , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estrutura Secundária de Proteína , Corantes de Rosanilina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA