RESUMO
A comparative interpretation of mammograms has become increasingly important, and it is crucial to develop subtraction processing and registration methods for mammograms. However, nonrigid image registration has seldom been applied to subjects constructed with soft tissue only, such as mammograms. We examined whether subtraction processing for the comparative interpretation of mammograms can be performed using nonrigid image registration. As a preliminary study, we evaluated the results of subtraction processing by applying nonrigid image registration to normal mammograms, assuming a comparative interpretation between the left and right breasts. Mediolateral-oblique-view mammograms were taken from noncancer patients and divided into 1000 cases for training, 100 cases for validation, and 500 cases for testing. Nonrigid image registration was applied to align the horizontally flipped left-breast mammogram with the right one. We compared the sum of absolute differences (SAD) of the difference of bilateral images (Difference Image) with and without the application of nonrigid image registration. Statistically, the average SAD was significantly lower with the application of nonrigid image registration than without it (without: 0.0692; with: 0.0549 (p < 0.001)). In four subgroups using the breast area, breast density, compressed breast thickness, and Difference Image without nonrigid image registration, the average SAD of the Difference Image was also significantly lower with nonrigid image registration than without it (p < 0.001). Nonrigid image registration was found to be sufficiently useful in aligning bilateral mammograms, and it is expected to be an important tool in the development of a support system for the comparative interpretation of mammograms.
RESUMO
Background: Mammography is the modality of choice for breast cancer screening. However, some cases of breast cancer have been diagnosed through ultrasonography alone with no or benign findings on mammography (hereby referred to as non-visibles). Therefore, this study aimed to identify factors that indicate the possibility of non-visibles based on the mammary gland content ratio estimated using artificial intelligence (AI) by patient age and compressed breast thickness (CBT). Methods: We used AI previously developed by us to estimate the mammary gland content ratio and quantitatively analyze 26,232 controls and 150 non-visibles. First, we evaluated divergence trends between controls and non-visibles based on the average estimated mammary gland content ratio to ensure the importance of analysis by age and CBT. Next, we evaluated the possibility that mammary gland content ratio ≥50% groups affect the divergence between controls and non-visibles to specifically identify factors that indicate the possibility of non-visibles. The images were classified into two groups for the estimated mammary gland content ratios with a threshold of 50%, and logistic regression analysis was performed between controls and non-visibles. Results: The average estimated mammary gland content ratio was significantly higher in non-visibles than in controls when the overall sample, the patient age was ≥40 years and the CBT was ≥40 mm (p < 0.05). The differences in the average estimated mammary gland content ratios in the controls and non-visibles for the overall sample was 7.54%, the differences in patients aged 40-49, 50-59, and ≥60 years were 6.20%, 7.48%, and 4.78%, respectively, and the differences in those with a CBT of 40-49, 50-59, and ≥60 mm were 6.67%, 9.71%, and 16.13%, respectively. In evaluating mammary gland content ratio ≥50% groups, we also found positive correlations for non-visibles when controls were used as the baseline for the overall sample, in patients aged 40-59 years, and in those with a CBT ≥40 mm (p < 0.05). The corresponding odds ratios were ≥2.20, with a maximum value of 4.36. Conclusion: The study findings highlight an estimated mammary gland content ratio of ≥50% in patients aged 40-59 years or in those with ≥40 mm CBT could be indicative factors for non-visibles.
RESUMO
Recently, breast types were categorized into four types based on the Breast Imaging Reporting and Data System (BI-RADS) atlas, and evaluating them is vital in clinical practice. A Japanese guideline, called breast composition, was developed for the breast types based on BI-RADS. The guideline is characterized using a continuous value called the mammary gland content ratio calculated to determine the breast composition, therefore allowing a more objective and visual evaluation. Although a discriminative deep convolutional neural network (DCNN) has been developed conventionally to classify the breast composition, it could encounter two-step errors or more. Hence, we propose an alternative regression DCNN based on mammary gland content ratio. We used 1476 images, evaluated by an expert physician. Our regression DCNN contained four convolution layers and three fully connected layers. Consequently, we obtained a high correlation of 0.93 (p < 0.01). Furthermore, to scrutinize the effectiveness of the regression DCNN, we categorized breast composition using the estimated ratio obtained by the regression DCNN. The agreement rates are high at 84.8%, suggesting that the breast composition can be calculated using regression DCNN with high accuracy. Moreover, the occurrence of two-step errors or more is unlikely, and the proposed method can intuitively understand the estimated results.
RESUMO
Since the increasing population of aging, cognitive training is focused as one of the non-pharmacological preventive approach of cognitive decline. Although the accumulation of the knowledge, they hardly reflect to the programs for clinical use. We developed a task set named "Atama-no-dojo," designed to activate multiple cognitive functions and enhance motivational incentives. The objective of our study is to confirm the effect of our program through a 6 months group intervention program. The intervention program conducted in a day service center for 6 months in the duration of 45 minutes per day, 4 days per month for a total of 25 sessions. Participants worked to the tasks on the screen all together with filling in the answering sheet. Neuropsychological tests, SF36 and GDS were assessed at pre-/post-intervention periods. Participants filled in a questionnaire about impression to the program at the last training session. Fourteen women (82.2 ± 2.9 years old) were analyzed and significant changes were found in the improvement of memory, attention, inhibition, GDS and some items of SF36. All participants recognized the program as fun and wanted to continue. Some of the participants' positive impressions to the program correlated to cognitive improvement. The improved cognitive functions by 6 months intervention of "Atama-no-dojo" were mainly related to prefrontal cortex and the motivational incentives seemed supported the effect of task contents. We recognized the importance of task difficulty setting and motivational incentives to reduce frustration from working on difficult tasks and enhance the effects of improvement from activating brain function.