Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Spine J ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38092193

RESUMO

BACKGROUND CONTEXT: Bone morphogenetic proteins (BMPs) have potent osteoinductivity and have been applied clinically for challenging musculoskeletal conditions. However, the supraphysiological doses of BMPs used in clinical settings cause various side effects that prevent widespread use, and therefore the BMP dosage needs to be reduced. PURPOSE: To address this problem, we synthesized 7C, a retinoic acid receptor γ antagonist-loaded nanoparticle (NP), and investigated its potential application in BMP-based bone regeneration therapy using a rat spinal fusion model. STUDY DESIGN: An experimental animal study. METHODS: Fifty-three male 8-week-old Sprague-Dawley rats underwent posterolateral spinal fusion and were divided into the following five treatment groups: (1) no recombinant human (rh)BMP-2 and blank-NP (Control), (2) no rhBMP-2 and 1 µg 7C-NP (7C group), (3) low-dose rhBMP-2 (0.5 µg) and 1 µg blank-NP (L-BMP group), (4) low-dose rhBMP-2 (0.5 µg) and 1 µg 7C-NP (L-BMP + 7C group), and (5) high-dose rhBMP-2 (5.0 µg) and 1 µg blank-NP (H-BMP group). Micro-computed tomography and histologic analysis were performed 2 and 6 weeks after the surgery. RESULTS: The spinal fusion rates of the Control and 7C groups were both 0%, and those of the L-BMP, L-BMP + 7C, and H-BMP groups were 55.6%, 94.4%, and 100%, respectively. The L-BMP + 7C group markedly promoted cartilaginous tissue formation during BMP-induced endochondral bone formation that resulted in a significantly better spinal fusion rate and bone formation than in the L-BMP group. Although spinal fusion was slower in the L-BMP + 7C group, the L-BMP + 7C group formed a spinal fusion mass with better bone quality than the spinal fusion mass in the H-BMP group. CONCLUSIONS: The combined use of 7C-NP with rhBMP-2 in a rat posterolateral lumbar fusion model increased spinal fusion rate and new bone volume without deteriorating the quality of newly formed bone. CLINICAL SIGNIFICANCE: 7C-NP potentiates BMP-2-induced bone regeneration and has the potential for efficient bone regeneration with low-dose BMP-2, which can reduce the dose-dependent side effects of BMP-2 in clinical settings.

2.
Proc Natl Acad Sci U S A ; 120(47): e2304492120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37976259

RESUMO

Bone regulates its mass and quality in response to diverse mechanical, hormonal, and local signals. The bone anabolic or catabolic responses to these signals are often received by osteocytes, which then coordinate the activity of osteoblasts and osteoclasts on bone surfaces. We previously established that calcium/calmodulin-dependent kinase 2 (CaMKII) is required for osteocytes to respond to some bone anabolic cues in vitro. However, a role for CaMKII in bone physiology in vivo is largely undescribed. Here, we show that conditional codeletion of the most abundant isoforms of CaMKII (delta and gamma) in mature osteoblasts and osteocytes [Ocn-cre:Camk2d/Camk2g double-knockout (dCKO)] caused severe osteopenia in both cortical and trabecular compartments by 8 wk of age. In addition to having less bone mass, dCKO bones are of worse quality, with significant deficits in mechanical properties, and a propensity to fracture. This striking skeletal phenotype is multifactorial, including diminished osteoblast activity, increased osteoclast activity, and altered phosphate homeostasis both systemically and locally. These dCKO mice exhibited decreased circulating phosphate (hypophosphatemia) and increased expression of the phosphate-regulating hormone fibroblast growth factor 23. Additionally, dCKO mice expressed less bone-derived tissue nonspecific alkaline phosphatase protein than control mice. Consistent with altered phosphate homeostasis, we observed that dCKO bones were hypo-mineralized with prominent osteoid seams, analogous to the phenotypes of mice with hypophosphatemia. Altogether, these data reveal a fundamental role for osteocyte CaMKIIδ and CaMKIIγ in the maintenance of bone mass and bone quality and link osteoblast/osteocyte CaMKII to phosphate homeostasis.


Assuntos
Cálcio , Hipofosfatemia , Camundongos , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Osteoblastos/metabolismo , Osteócitos/metabolismo , Fosfatos/metabolismo
3.
Bone Res ; 11(1): 20, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37080994

RESUMO

Longitudinal bone growth relies on endochondral ossification in the cartilaginous growth plate, where chondrocytes accumulate and synthesize the matrix scaffold that is replaced by bone. The chondroprogenitors in the resting zone maintain the continuous turnover of chondrocytes in the growth plate. Malnutrition is a leading cause of growth retardation in children; however, after recovery from nutrient deprivation, bone growth is accelerated beyond the normal rate, a phenomenon termed catch-up growth. Although nutritional status is a known regulator of long bone growth, it is largely unknown whether and how chondroprogenitor cells respond to deviations in nutrient availability. Here, using fate-mapping analysis in Axin2CreERT2 mice, we showed that dietary restriction increased the number of Axin2+ chondroprogenitors in the resting zone and simultaneously inhibited their differentiation. Once nutrient deficiency was resolved, the accumulated chondroprogenitor cells immediately restarted differentiation and formed chondrocyte columns, contributing to accelerated growth. Furthermore, we showed that nutrient deprivation reduced the level of phosphorylated Akt in the resting zone and that exogenous IGF-1 restored the phosphorylated Akt level and stimulated differentiation of the pooled chondroprogenitors, decreasing their numbers. Our study of Axin2CreERT2 revealed that nutrient availability regulates the balance between accumulation and differentiation of chondroprogenitors in the growth plate and further demonstrated that IGF-1 partially mediates this regulation by promoting the committed differentiation of chondroprogenitor cells.

4.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36729662

RESUMO

The energetic costs of bone formation require osteoblasts to coordinate their activities with tissues, like adipose, that can supply energy-dense macronutrients. In the case of intermittent parathyroid hormone (PTH) treatment, a strategy used to reduce fracture risk, bone formation is preceded by a change in systemic lipid homeostasis. To investigate the requirement for fatty acid oxidation by osteoblasts during PTH-induced bone formation, we subjected mice with osteoblast-specific deficiency of mitochondrial long-chain ß-oxidation as well as mice with adipocyte-specific deficiency for the PTH receptor or adipose triglyceride lipase to an anabolic treatment regimen. PTH increased the release of fatty acids from adipocytes and ß-oxidation by osteoblasts, while the genetic mouse models were resistant to the hormone's anabolic effect. Collectively, these data suggest that PTH's anabolic actions require coordinated signaling between bone and adipose, wherein a lipolytic response liberates fatty acids that are oxidized by osteoblasts to fuel bone formation.


Assuntos
Osteogênese , Hormônio Paratireóideo , Camundongos , Animais , Osteoblastos/fisiologia , Osso e Ossos , Transdução de Sinais
5.
N Am Spine Soc J ; 13: 100191, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36590450

RESUMO

Cells take in, consume, and synthesize nutrients for numerous physiological functions. This includes not only energy production but also macromolecule biosynthesis, which will further influence cellular signaling, redox homeostasis, and cell fate commitment. Therefore, alteration in cellular nutrient metabolism is associated with pathological conditions. Intervertebral discs, particularly the nucleus pulposus (NP), are avascular and exhibit unique metabolic preferences. Clinical and preclinical studies have indicated a correlation between intervertebral degeneration (IDD) and systemic metabolic diseases such as diabetes, obesity, and dyslipidemia. However, a lack of understanding of the nutrient metabolism of NP cells is masking the underlying mechanism. Indeed, although previous studies indicated that glucose metabolism is essential for NP cells, the downstream metabolic pathways remain unknown, and the potential role of other nutrients, like amino acids and lipids, is understudied. In this literature review, we summarize the current understanding of nutrient metabolism in NP cells and discuss other potential metabolic pathways by referring to a human NP transcriptomic dataset deposited to the Gene Expression Omnibus, which can provide us hints for future studies of nutrient metabolism in NP cells and novel therapies for IDD.

6.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711544

RESUMO

Longitudinal bone growth relies on endochondral ossification in the cartilaginous growth plate where chondrocytes accumulate and synthesize the matrix scaffold that is replaced by bone. The chondroprogenitors in the resting zone maintain the continuous turnover of chondrocytes in the growth plate. Malnutrition is a leading cause of growth retardation in children; however, after recovery from nutrient deprivation, bone growth is accelerated beyond the normal rate, a phenomenon termed catch-up growth. Though nutritional status is a known regulator of long bone growth, it is largely unknown if and how chondroprogenitor cells respond to deviations in nutrient availability. Here, using fate-mapping analysis in Axin2Cre ERT2 mice, we showed that dietary restriction increased the number of Axin2+ chondroprogenitors in the resting zone and simultaneously inhibited their differentiation. Once nutrient deficiency was resolved, the accumulated chondroprogenitor cells immediately restarted differentiation and formed chondrocyte columns, contributing to accelerated growth. Furthermore, we showed that nutrient deprivation reduced the level of phosphorylated Akt in the resting zone, and that exogenous IGF-1 canceled this reduction and stimulated differentiation of the pooled chondroprogenitors, decreasing their numbers. Our study of Axin2Cre ERT2 revealed that nutrient availability regulates the balance between accumulation and differentiation of chondroprogenitors in the growth plate, and further demonstrated that IGF-1 partially mediates this regulation by promoting the committed differentiation of the chondroprogenitor cells.

7.
J Physiol ; 601(2): 355-379, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36285717

RESUMO

Type I collagen alterations cause osteogenesis imperfecta (OI), a connective tissue disorder characterized by severe bone fragility. Patients with OI can suffer from significant pulmonary manifestations including severe respiratory distress in the neonatal period and a progressive decline in respiratory function in adulthood. We and others have shown intrinsic lung defects in some mouse models of OI. In this large study, we performed histological, histomorphometric, microcomputed tomography and invasive studies on oim/+, Col1a2+/G610C , CrtapKO and oim/oim mice, mimicking mild to moderate to severe OI, with the overall goal of determining the extent of their pulmonary and respiratory mechanics defects and whether these defects correlate with the skeletal disease severity and affect each sex equally. Although with variable severity, OI lung histology consistently showed alveolar simplification with enlarged acinar airspace and reduced alveolar surface. Numerous respiratory mechanics parameters, including respiratory system resistance and elastance, tissue damping, inspiratory capacity, total lung capacity, and others, were significantly and similarly impacted in CrtapKO and oim/oim but not in oim/+ or Col1a2+/G610C compared to control mice. Our data indicate that the impact of type I collagen alterations and OI on lung morphology and function positively correlate with the severity of the extracellular matrix deficiency. Moreover, the respiratory defects were more pronounced in male compared to female mice. It will be important to determine whether our observations in mice translate to OI patients and to dissect the respective contribution of intrinsic lung defects vs. extrinsic skeletal defects to impaired lung function in OI. KEY POINTS: Different type I collagen alterations in mouse models of osteogenesis imperfecta (OI) cause similar abnormal lung histology, with alveolar simplification and reduced alveolar surface, reminiscent of emphysema. Several respiratory mechanics parameters are altered in mouse models of OI. The impact of type I collagen alterations and OI on lung morphology and function positively correlate with the severity of the extracellular matrix deficiency. Respiratory defects were more pronounced in male compared to female mice. It will be important to determine whether our observations in mice translate to OI patients and to dissect the respective contribution of intrinsic lung defects vs. extrinsic skeletal defects to impaired lung function in OI.


Assuntos
Colágeno Tipo I , Osteogênese Imperfeita , Animais , Feminino , Masculino , Camundongos , Colágeno Tipo I/genética , Modelos Animais de Doenças , Pulmão/patologia , Osteogênese Imperfeita/complicações , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Microtomografia por Raio-X
8.
Bone Rep ; 17: 101636, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36389627

RESUMO

Mesenchymal stromal cells (MSCs) have been utilized in cell therapy for various diseases. Recent studies have demonstrated that extracellular vesicles (EVs) released by MSCs play an important role in their therapeutic activities. EVs contain a variety of bioactive molecules such as proteins, messenger RNAs (mRNAs), and micro RNAs (miRNAs) and modify the function of the recipient cells by transferring these molecules. Despite the promising potential of EV therapy as a substitute for MSC therapy, there are challenges that need to be addressed for the clinical success of EV therapy. EV quality has been shown to vary from batch to batch and preparation to preparation. As the consistency and reproducibility of therapeutic effects rely on the quality of EVs, it is necessary to establish techniques to manufacture scalable amounts of EVs with the same quality. In this manuscript, we discuss the potential factors that affect EV quality. We then introduce pre-clinical studies of EV therapy for bone/cartilage diseases such as osteoarthritis, rheumatoid arthritis, and osteoporosis.

9.
Bone Rep ; 17: 101616, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36105852

RESUMO

Endochondral bone formation is an important pathway in fracture healing, involving the formation of a cartilaginous soft callus and the process of cartilage-to-bone transition. Failure or delay in the cartilage-to-bone transition causes an impaired bony union such as nonunion or delayed union. During the healing process, multiple types of cells including chondrocytes, osteoprogenitors, osteoblasts, and endothelial cells coexist in the callus, and inevitably crosstalk with each other. Hypertrophic chondrocytes located between soft cartilaginous callus and bony hard callus mediate the crosstalk regulating cell-matrix degradation, vascularization, osteoclast recruitment, and osteoblast differentiation in autocrine and paracrine manners. Furthermore, hypertrophic chondrocytes can become osteoprogenitors and osteoblasts, and directly contribute to woven bone formation. In this review, we focus on the roles of hypertrophic chondrocytes in fracture healing and dissect the intermingled crosstalk in fracture callus during the cartilage-to-bone transition.

10.
Adv Sci (Weinh) ; 9(29): e2201273, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988140

RESUMO

Cellular response to protein misfolding underlies multiple diseases. Collagens are the most abundant vertebrate proteins, yet little is known about cellular response to misfolding of their procollagen precursors. Osteoblasts (OBs)-the cells that make bone-produce so much procollagen that it accounts for up to 40% of mRNAs in the cell, which is why bone bears the brunt of mutations causing procollagen misfolding in osteogenesis imperfecta (OI). The present study of a G610C mouse model of OI by multiple transcriptomic techniques provides first solid clues to how OBs respond to misfolded procollagen accumulation in the endoplasmic reticulum (ER) and how this response affects OB function. Surprisingly, misfolded procollagen escapes the quality control in the ER lumen and indirectly triggers the integrated stress response (ISR) through other cell compartments. In G610C OBs, the ISR is regulated by mitochondrial HSP70 (mt-HSP70) and ATF5 instead of their BIP and ATF4 paralogues, which normally activate and regulate ISR to secretory protein misfolding in the ER. The involvement of mt-HSP70 and ATF5 together with other transcriptomic findings suggest that mitochondria might initiate the ISR upon disruption of ER-mitochondria connections or might respond to the ISR activated by a yet unknown sensor.


Assuntos
Osteogênese Imperfeita , Pró-Colágeno , Fatores Ativadores da Transcrição/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Camundongos , Mitocôndrias/metabolismo , Osteoblastos/metabolismo , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Pró-Colágeno/metabolismo
11.
Front Cell Dev Biol ; 10: 802699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359440

RESUMO

Bone morphogenetic proteins (BMPs) have been clinically applied for induction of bone formation in musculoskeletal disorders such as critical-sized bone defects, nonunions, and spinal fusion surgeries. However, the use of supraphysiological doses of BMP caused adverse events, which were sometimes life-threatening. Therefore, safer treatment strategies for bone regeneration have been sought for decades. Systemic administration of a potent selective antagonist of retinoic acid nuclear receptor gamma (RARγ) (7C) stimulated BMP-induced ectopic bone formation. In this study, we developed 7C-loaded poly lactic nanoparticles (7C-NPs) and examined whether local application of 7C enhances BMP-induced bone regeneration. The collagen sponge discs that absorbed recombinant human (rh) BMP-2 were implanted into the dorsal fascia of young adult mice to induce ectopic bone. The combination of rhBMP-2 and 7C-NP markedly increased the total bone volume and thickness of the bone shell of the ectopic bone in a dose-dependent manner compared to those with rhBMP-2 only. 7C stimulated sulfated proteoglycan production, expression of chondrogenic marker genes, and Sox9 reporter activity in both chondrogenic cells and MSCs. The findings suggest that selective RARγ antagonist 7C or the related compounds potentiate the bone inductive ability of rhBMP-2, as well as support any future research to improve the BMP-2 based bone regeneration procedures in a safe and efficient manner.

12.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162938

RESUMO

Extracellular vesicles (EVs) released by bone marrow stromal cells (BMSCs) have been shown to act as a transporter of bioactive molecules such as RNAs and proteins in the therapeutic actions of BMSCs in various diseases. Although EV therapy holds great promise to be a safer cell-free therapy overcoming issues related to cell therapy, manufacturing processes that offer scalable and reproducible EV production have not been established. Robust and scalable BMSC manufacturing methods have been shown to enhance EV production; however, the effects on EV quality remain less studied. Here, using human BMSCs isolated from nine healthy donors, we examined the effects of high-performance culture media that can rapidly expand BMSCs on EV production and quality in comparison with the conventional culture medium. We found significantly increased EV production from BMSCs cultured in the high-performance media without altering their multipotency and immunophenotypes. RNA sequencing revealed that RNA contents in EVs from high-performance media were significantly reduced with altered profiles of microRNA enriched in those related to cellular growth and proliferation in the pathway analysis. Given that pre-clinical studies at the laboratory scale often use the conventional medium, these findings could account for the discrepancy in outcomes between pre-clinical and clinical studies. Therefore, this study highlights the importance of selecting proper culture conditions for scalable and reproducible EV manufacturing.


Assuntos
Meios de Cultura/química , Vesículas Extracelulares/genética , Células-Tronco Mesenquimais/citologia , MicroRNAs/análise , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Voluntários Saudáveis , Humanos , Células-Tronco Mesenquimais/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
13.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34990412

RESUMO

Short stature is a major skeletal phenotype in osteogenesis imperfecta (OI), a genetic disorder mainly caused by mutations in genes encoding type I collagen. However, the underlying mechanism is poorly understood, and no effective treatment is available. In OI mice that carry a G610C mutation in COL1A2, we previously found that mature hypertrophic chondrocytes (HCs) are exposed to cell stress due to accumulation of misfolded mutant type I procollagen in the endoplasmic reticulum (ER). By fate mapping analysis of HCs in G610C OI mice, we found that HCs stagnate in the growth plate, inhibiting translocation of HC descendants to the trabecular area and their differentiation to osteoblasts. Treatment with 4-phenylbutyric acid (4PBA), a chemical chaperone, restored HC ER structure and rescued this inhibition, resulting in enhanced longitudinal bone growth in G610C OI mice. Interestingly, the effects of 4PBA on ER dilation were limited in osteoblasts, and the bone fragility was not ameliorated. These results highlight the importance of targeting HCs to treat growth deficiency in OI. Our findings demonstrate that HC dysfunction induced by ER disruption plays a critical role in the pathogenesis of OI growth deficiency, which lays the foundation for developing new therapies for OI.


Assuntos
Condrócitos/metabolismo , Condrogênese/genética , Colágeno Tipo I/genética , Mutação , Osteogênese Imperfeita/tratamento farmacológico , Animais , Proliferação de Células , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Condrogênese/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo
14.
Cytotherapy ; 23(5): 411-422, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33781710

RESUMO

Mesenchymal stromal cells (MSCs) possess remarkable tumor tropism, making them ideal vehicles to deliver tumor-targeted therapeutic agents; however, their value in clinical medicine has yet to be realized. A barrier to clinical utilization is that only a small fraction of infused MSCs ultimately localize to the tumor. In an effort to overcome this obstacle, we sought to enhance MSC trafficking by focusing on the factors that govern MSC arrival within the tumor microenvironment. Our findings show that MSC chemoattraction is only present in select tumors, including osteosarcoma, and that the chemotactic potency among similar tumors varies substantially. Using an osteosarcoma xenograft model, we show that human MSCs traffic to the tumor within several hours of infusion. After arrival, MSCs are observed to localize in clusters near blood vessels and MSC-associated bioluminescence signal intensity is increased, suggesting that the seeded cells expand after engraftment. However, our studies reveal that a significant portion of MSCs are eliminated en route by splenic macrophage phagocytosis, effectively limiting the number of cells available for tumor engraftment. To increase MSC survival, we transiently depleted macrophages with liposomal clodronate, which resulted in increased tumor localization without substantial reduction in tumor-associated macrophages. Our data suggest that transient macrophage depletion will significantly increase the number of MSCs in the spleen and thus improve MSC localization within a tumor, theoretically increasing the effective dose of an anti-cancer agent. This strategy may subsequently improve the clinical efficacy of MSCs as vehicles for the tumor-directed delivery of therapeutic agents.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteossarcoma , Humanos , Macrófagos , Osteossarcoma/terapia , Fagocitose , Microambiente Tumoral
15.
Cartilage ; 13(2_suppl): 315S-325S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-31997656

RESUMO

OBJECTIVE: The purposes of this study are to evaluate which growth plate parameters are associated with bone growth in mice and to compare the mouse results with those in humans. DESIGN: The sagittal sections of the proximal growth plate of the mouse tibia from neonate to young adult stages were subjected to histomorphometric and functional analyses. The radiographic images of tibias of human patients until puberty were analyzed to obtain the tibia length and the proximal growth plate height. It was found that a linear correlation best modeled the relationship between the growth plate variables with the tibia growth rate and length. RESULTS: In mice, total height, resting zone height, combined height of the proliferation and prehypertrophic zones, proliferation activity, and the total width of tibia growth plate showed high linear correlation with tibia bone length and bone growth rate, but the hypertrophic zone height and the growth plate area did not. In both mice and humans, the total growth plate width of tibia was found to have the strongest correlation with tibia length and growth rate. CONCLUSIONS: The results validated that growth plate total height, the height of the resting zone and cell proliferation activity are appropriate parameters to evaluate the balance between growth plate activity and bone growth in mice, consistent with previous reports. The study also provided a new growth plate parameter candidate, growth plate width for growth plate activity evaluation in both mouse and human tibia bone.


Assuntos
Lâmina de Crescimento , Tíbia , Animais , Desenvolvimento Ósseo , Osso e Ossos , Lâmina de Crescimento/diagnóstico por imagem , Humanos , Hipertrofia , Camundongos , Tíbia/diagnóstico por imagem
16.
Am J Sports Med ; 48(9): 2277-2286, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32543878

RESUMO

BACKGROUND: Clinical use of platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) has gained momentum as treatment for muscle injuries. Exosomes, or small cell-derived vesicles, could be helpful if they could deliver the same or better physiological effect without cell transplantation into the muscle. HYPOTHESIS: Local delivery of exosomes derived from PRP (PRP-exos) or MSCs (MSC-exos) to injured muscles hastens recovery of contractile function. STUDY DESIGN: Controlled laboratory study. METHODS: In a rat model, platelets were isolated from blood, and MSCs were isolated from bone marrow and expanded in culture; exosomes from both were isolated through ultracentrifugation. The tibialis anterior muscles were injured in vivo using maximal lengthening contractions. Muscles were injected with PRP-exos or MSC-exos (immediately after injury and 5 and 10 days after injury); controls received an equal volume of saline. Histological and biochemical analysis was performed on tissues for all groups. RESULTS: Injury resulted in a significant loss of maximal isometric torque (66% ± 3%) that gradually recovered over 2 weeks. Both PRP-exos and MSC-exos accelerated recovery, with similar faster recovery of contractile function over the saline-treated group at 5, 10, and 15 days after injury (P < .001). A significant increase in centrally nucleated fibers was seen with both types of exosome groups by day 15 (P < .01). Genes involved in skeletal muscle regeneration were modulated by different exosomes. Muscles treated with PRP-exos had increased expression of Myogenin gene (P < .05), whereas muscles treated with MSC-exos had reduced expression of TGF-ß (P < .05) at 10 days after muscle injury. CONCLUSION: Exosomes derived from PRP or MSCs can facilitate recovery after a muscle strain injury in a small-animal model likely because of factors that can modulate inflammation, fibrosis, and myogenesis. CLINICAL RELEVANCE: Given their small size, low immunogenicity, and ease with which they can be obtained, exosomes could represent a novel therapy for many orthopaedic ailments.


Assuntos
Exossomos/transplante , Células-Tronco Mesenquimais , Músculo Esquelético/lesões , Plasma Rico em Plaquetas , Animais , Ratos , Recuperação de Função Fisiológica , Regeneração
17.
Bone ; 137: 115368, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32380258

RESUMO

Wnt signaling together with other signaling pathways governs cartilage development and the growth plate function during long bone formation and growth. ß-catenin-dependent Wnt signaling is a specific lineage determinant of skeletal mesenchymal cells toward chondrogenic or osteogenic direction. Once cartilage forms and the growth plate organize, Wnt signaling continues to regulate proliferation and differentiation of the growth plate chondrocytes. Although chondrocytes in the growth plate have a high capacity to proliferate, new cells must be supplied to the growth plate from chondroprogenitor population. Advances in in vivo cell tracking techniques have demonstrated the importance of Wnt signaling in driving tissue renewal. The Wnt-responsive cells, genetically marked by the Wnt-reporter system, are found as stem cells in various tissues. Similarly, Wnt-responsive cells are found in the periphery of the growth plate and expanded to constitute entire column structure, indicating that Wnt signaling participates in the regulation of chondroprogenitors in the growth plate. This review will discuss advancements in research of progenitors in the growth plate, specifically focusing on Wnt/ß-catenin signaling.


Assuntos
Desenvolvimento Ósseo , Condrogênese , Via de Sinalização Wnt , Animais , Diferenciação Celular , Condrócitos/metabolismo , Lâmina de Crescimento/metabolismo , Humanos , beta Catenina/metabolismo
18.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L845-L851, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191117

RESUMO

Premature infants are often exposed to positive pressure ventilation and supplemental oxygen, which leads to the development of chronic lung disease (CLD). There are currently no standard serum biomarkers used for prediction or early detection of patients who go on to develop CLD. MicroRNAs (miRNAs) are a novel class of naturally occurring, short, noncoding substances that regulate gene expression at the posttranscriptional level and cause translational inhibition and/or mRNA degradation and present in body fluids packaged in extracellular vesicles (EVs), rendering them remarkably stable. Our aim was to evaluate miRNAs identified in serum EVs of premature infants as potential biomarkers for CLD. Serum EVs were extracted from premature infants at birth and on the 28th day of life (DOL). Using a human miRNA array, we identified 62 miRNAs that were universally expressed in CLD patients and non-CLD patients. Of the 62 miRNAs, 59 miRNAs and 44 miRNAs were differentially expressed on DOL0 and DOL28 in CLD and non-CLD patients, respectively. Of these miRNAs, serum EV miR-21 was upregulated in CLD patients on DOL28 compared with levels at birth and downregulated in non-CLD patients on DOL28 compared with levels at birth. In neonatal mice exposed to hyperoxia for 7days, as a model of CLD, five miRNAs (miR-34a, miR-21, miR-712, miR-682, and miR-221) were upregulated, and 7 miRNAs (miR-542-5p, miR-449a, miR-322, miR-190b, miR-153, miR-335-3p, miR-377) were downregulated. MiR-21 was detected as a common miRNA that changed in CLD patients and in the hyperoxia exposed mice. We conclude that EV miR-21 may be a biomarker of CLD.


Assuntos
Hiperóxia/diagnóstico , Hiperóxia/genética , Pneumopatias/diagnóstico , Pneumopatias/genética , MicroRNAs/genética , Animais , Animais Recém-Nascidos , Antagomirs/genética , Antagomirs/metabolismo , Biomarcadores/metabolismo , Doença Crônica , Modelos Animais de Doenças , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Hiperóxia/sangue , Hiperóxia/fisiopatologia , Recém-Nascido , Recém-Nascido Prematuro , Pneumopatias/sangue , Pneumopatias/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/sangue , MicroRNAs/classificação , Análise de Sequência com Séries de Oligonucleotídeos , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Prognóstico
19.
Spine J ; 20(5): 821-829, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31901554

RESUMO

BACKGROUND CONTEXT: The effects of using off-label recombinant human bone morphogenetic protein (rhBMP)-2 for interbody fusion are controversial. Although animal models of posterolateral fusion are well-established, establishing animal models to validate the safety and efficacy of interbody fusion is difficult, which may contribute to the inconsistent clinical results. PURPOSE: To develop a novel animal model of interbody fusion in rat coccygeal vertebrae without destroying bony endplates. STUDY DESIGN: An experimental animal study. METHODS: Forty-five male Sprague-Dawley rats underwent coccygeal interbody fusion without violating vertebral endplates. The animals were divided into three different groups based on the materials that were implanted into the interbody space (1) allogeneic iliac bone (IB) alone (IB group), (2) IB and 3 µg of rhBMP-2 (BMP low-dose group), or (3) IB and 10 µg of rhBMP-2 (BMP high-dose group). Fusion rates were investigated using microcomputed tomography 6 weeks after the operation. The incidence of adverse events, including soft-tissue swelling, delayed wound healing, osteolysis, and ectopic bone formation were evaluated. The total number of adverse events (using the adverse event score) in each group and the swelling ratio (calculated using the surgical site tissue volume [TV; TV on postoperative day 1/preoperative TV]) were also evaluated. RESULTS: The fusion rates in the BMP low- and high-dose groups (33.3% and 46.7%) were not significantly different, but both were significantly higher than that in the IB group (0%) (p=.042 and .006, respectively). Significant differences in the incidence of osteolysis, adverse event scores, and swelling ratios were observed only between the BMP high-dose and IB groups (p=.043, .006 and .014, respectively). CONCLUSIONS: We developed a novel rat model of interbody fusion in which the vertebral endplates were not violated, reflecting the normal clinical setting. rhBMP-2 use increased the fusion rate, but a higher dose of rhBMP-2 did not lead to a higher fusion rate than that for low-dose rhBMP-2; conversely, it led to an increase in the occurrence of adverse events. CLINICAL SIGNIFICANCE: This novel rat model of coccygeal interbody fusion that preserved bony endplates has clinical significance for validating the effectiveness of biologics or bone graft substitutes before clinical trial.


Assuntos
Fusão Vertebral , Animais , Proteína Morfogenética Óssea 2 , Ílio , Vértebras Lombares , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes , Fusão Vertebral/efeitos adversos , Fator de Crescimento Transformador beta/efeitos adversos , Microtomografia por Raio-X
20.
JVS Vasc Sci ; 1: 57-67, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34223286

RESUMO

BACKGROUND: Bioresorbable vascular grafts (BVGs) can transform biologically into active blood vessels and represent an alternative to traditional synthetic conduits, which are prone to complications such as infection and thrombosis. Although platelet-derived growth factors and c-Kit positive cells play an important role in smooth muscle cell (SMC) migration and proliferation in vascular injury, atherosclerosis, or allograft, their roles in the vascular remodeling process of an arterial BVG remains unknown. Thus, we assessed the neottisue formation on arterial BVG remodeling by administrating imatinib, which is both a platelet-derived growth factor receptor kinase inhibitor and c-Kit receptor kinase inhibitor, in a murine model. METHODS: BVGs were composed of an inner poly(L-lactic-co-ε-caprolactone) copolymer sponge layer and an outer electrospun poly(L-lactic acid) nanofiber layer, which were implanted into the infrarenal abdominal aortas of C57BL/6 mice. After graft implantation, saline or 100 mg/kg of imatinib was administrated intraperitoneally daily for 2 weeks (n = 20 per group). Five mice in each group were scheduled to be humanely killed at 3 weeks and 15 at 8 weeks, and BVGs were explanted for histologic assessments. RESULTS: Graft patency during the 8-week observational period was not significantly different between groups (control, 86.7% vs imatinib, 80.0%; P > .999). Neotissue formation consisting of endothelialization, smooth muscle proliferation, and deposition of collagen and elastin was not observed in either group at 3 weeks. Similar endothelialization was achieved in both groups at 8 weeks, but thickness and percent area of neotissue formation were significantly higher in the control group than in the imatinib group, (thickness, 30. 1 ± 7.2 µm vs 19.6 ± 4.5 µm [P = .001]; percent area, 9.8 ± 2.7% vs 6.8 ± 1.8% [P = .005]). Furthermore, SMC layer and deposition of collagen and elastin were better organized at 8 weeks in the control group compared with the imatinib group. The thickness of SMC layer and collagen fiber area were significantly greater at 8 weeks in the control group than in the imatinib group (P < .001 and P = .026, respectively). Because there was no difference in the inner diameter of explanted BVGs (831.7 ± 63.4 µm vs 841.8 ± 41.9 µm; P = .689), neotissue formation was thought to advance toward the outer portion of the BVG with degradation of the polymer scaffold. CONCLUSIONS: Imatinib attenuates neotissue formation during vascular remodeling in arterial bioresorbable vascular grafts (BVGs) by inhibiting SMC layer formation and extracellular matrix deposition. CLINICAL RELEVANCE: This study demonstrated that imatinib attenuated neotissue formation during vascular remodeling in arterial Bioresorbable vascular graft (BVG) by inhibiting smooth muscle cell formation and extracellular matrix deposition. In addition, as imatinib did not modify the inner diameter of BVG, neotissue advanced circumferentially toward the outer portion of the neovessel. Currently, BVGs have not yet been clinically applied to the arterial circulation. The results of this study are helpful for the design of BVG that can achieve an optimal balance between polymer degradation and neotissue formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA