Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioessays ; 45(11): e2300076, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37603398

RESUMO

Ageing is associated with a decline in autophagy and elevated reactive oxygen species (ROS), which can breach the capacity of antioxidant systems. Resulting oxidative stress can cause further cellular damage, including DNA breaks and protein misfolding. This poses a challenge for longevous organisms, including humans. In this review, we hypothesise that in the course of human evolution selective autophagy receptors (SARs) acquired the ability to sense and respond to localised oxidative stress. We posit that in the vicinity of protein aggregates and dysfunctional mitochondria oxidation of key cysteine residues in SARs induces their oligomerisation which initiates autophagy. The degradation of damaged cellular components thus could reduce ROS production and restore redox homeostasis. This evolutionarily acquired function of SARs may represent one of the biological adaptations that contributed to longer lifespan. Inversely, loss of this mechanism can lead to age-related diseases associated with impaired autophagy and oxidative stress.

2.
Cell Rep ; 42(5): 112372, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086404

RESUMO

Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Humanos , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Autofagia , Niacinamida/metabolismo
3.
EMBO J ; 42(5): e111372, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36514953

RESUMO

Mitophagy, the elimination of mitochondria via the autophagy-lysosome pathway, is essential for the maintenance of cellular homeostasis. The best characterised mitophagy pathway is mediated by stabilisation of the protein kinase PINK1 and recruitment of the ubiquitin ligase Parkin to damaged mitochondria. Ubiquitinated mitochondrial surface proteins are recognised by autophagy receptors including NDP52 which initiate the formation of an autophagic vesicle around the mitochondria. Damaged mitochondria also generate reactive oxygen species (ROS) which have been proposed to act as a signal for mitophagy, however the mechanism of ROS sensing is unknown. Here we found that oxidation of NDP52 is essential for the efficient PINK1/Parkin-dependent mitophagy. We identified redox-sensitive cysteine residues involved in disulphide bond formation and oligomerisation of NDP52 on damaged mitochondria. Oligomerisation of NDP52 facilitates the recruitment of autophagy machinery for rapid mitochondrial degradation. We propose that redox sensing by NDP52 allows mitophagy to function as a mechanism of oxidative stress response.


Assuntos
Mitofagia , Proteínas Nucleares , Proteínas Quinases , Humanos , Autofagia , Células HeLa , Mitofagia/fisiologia , Oxirredução , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Nucleares/metabolismo
4.
Dev Cell ; 57(22): 2584-2598.e11, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36413951

RESUMO

Autophagy is an essential catabolic process that promotes the clearance of surplus or damaged intracellular components. Loss of autophagy in age-related human pathologies contributes to tissue degeneration through a poorly understood mechanism. Here, we identify an evolutionarily conserved role of autophagy from yeast to humans in the preservation of nicotinamide adenine dinucleotide (NAD) levels, which are critical for cell survival. In respiring mouse fibroblasts with autophagy deficiency, loss of mitochondrial quality control was found to trigger hyperactivation of stress responses mediated by NADases of PARP and Sirtuin families. Uncontrolled depletion of the NAD(H) pool by these enzymes ultimately contributed to mitochondrial membrane depolarization and cell death. Pharmacological and genetic interventions targeting several key elements of this cascade improved the survival of autophagy-deficient yeast, mouse fibroblasts, and human neurons. Our study provides a mechanistic link between autophagy and NAD metabolism and identifies targets for interventions in human diseases associated with autophagic, lysosomal, and mitochondrial dysfunction.


Assuntos
NAD , Saccharomyces cerevisiae , Animais , Camundongos , Humanos , Sobrevivência Celular , Autofagia , Morte Celular
5.
Nature ; 594(7861): 111-116, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34012115

RESUMO

Ubiquitylation is a widespread post-translational protein modification in eukaryotes and marks bacteria that invade the cytosol as cargo for antibacterial autophagy1-3. The identity of the ubiquitylated substrate on bacteria is unknown. Here we show that the ubiquitin coat on Salmonella that invade the cytosol is formed through the ubiquitylation of a non-proteinaceous substrate, the lipid A moiety of bacterial lipopolysaccharide (LPS), by the E3 ubiquitin ligase ring finger protein 213 (RNF213). RNF213 is a risk factor for moyamoya disease4,5, which is a progressive stenosis of the supraclinoid internal carotid artery that causes stroke (especially in children)6,7. RNF213 restricts the proliferation of cytosolic Salmonella and is essential for the generation of the bacterial ubiquitin coat, both directly (through the ubiquitylation of LPS) and indirectly (through the recruitment of LUBAC, which is a downstream E3 ligase that adds M1-linked ubiquitin chains onto pre-existing ubiquitin coats8). In cells that lack RNF213, bacteria do not attract ubiquitin-dependent autophagy receptors or induce antibacterial autophagy. The ubiquitylation of LPS on Salmonella that invade the cytosol requires the dynein-like core of RNF213, but not its RING domain. Instead, ubiquitylation of LPS relies on an RZ finger in the E3 shell. We conclude that ubiquitylation extends beyond protein substrates and that ubiquitylation of LPS triggers cell-autonomous immunity, and we postulate that non-proteinaceous substances other than LPS may also become ubiquitylated.


Assuntos
Adenosina Trifosfatases/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Infecções por Salmonella/imunologia , Infecções por Salmonella/metabolismo , Salmonella typhimurium , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Autofagia , Linhagem Celular , Células HeLa , Humanos , Camundongos , Domínios RING Finger , Infecções por Salmonella/microbiologia , Ubiquitina/metabolismo
6.
Mol Cell ; 74(2): 320-329.e6, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30853402

RESUMO

Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated de novo at prospective cargo remains unknown. Phagophore formation in situ would require recruitment of the upstream autophagy machinery to prospective cargo. Here, we show that, essential for anti-bacterial autophagy, the cargo receptor NDP52 forms a trimeric complex with FIP200 and SINTBAD/NAP1, which are subunits of the autophagy-initiating ULK and the TBK1 kinase complex, respectively. FIP200 and SINTBAD/NAP1 are each recruited independently to bacteria via NDP52, as revealed by selective point mutations in their respective binding sites, but only in their combined presence does xenophagy proceed. Such recruitment of the upstream autophagy machinery by NDP52 reveals how detection of cargo-associated "eat me" signals, induction of autophagy, and juxtaposition of cargo and phagophores are integrated in higher eukaryotes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/genética , Proteínas Nucleares/genética , Proteínas Tirosina Quinases/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia , Sítios de Ligação/genética , Citoplasma/microbiologia , Citosol/microbiologia , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteínas Nucleares/química , Mutação Puntual/genética , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/química , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade
7.
Nat Commun ; 9(1): 256, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343728

RESUMO

Cellular homoeostatic pathways such as macroautophagy (hereinafter autophagy) are regulated by basic mechanisms that are conserved throughout the eukaryotic kingdom. However, it remains poorly understood how these mechanisms further evolved in higher organisms. Here we describe a modification in the autophagy pathway in vertebrates, which promotes its activity in response to oxidative stress. We have identified two oxidation-sensitive cysteine residues in a prototypic autophagy receptor SQSTM1/p62, which allow activation of pro-survival autophagy in stress conditions. The Drosophila p62 homologue, Ref(2)P, lacks these oxidation-sensitive cysteine residues and their introduction into the protein increases protein turnover and stress resistance of flies, whereas perturbation of p62 oxidation in humans may result in age-related pathology. We propose that the redox-sensitivity of p62 may have evolved in vertebrates as a mechanism that allows activation of autophagy in response to oxidative stress to maintain cellular homoeostasis and increase cell survival.


Assuntos
Autofagia , Proteostase , Espécies Reativas de Oxigênio/metabolismo , Proteína Sequestossoma-1/metabolismo , Sequência de Aminoácidos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos Knockout , Oxidantes/farmacologia , Oxirredução , Homologia de Sequência de Aminoácidos , Proteína Sequestossoma-1/genética
8.
Cell Stress ; 2(4): 91-93, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-31225472

RESUMO

Ageing and age-related diseases are characterised by increased oxidative and proteotoxic stress, which results in negative effects on cell function and survival. The cell possesses several mechanisms to deal with damaged proteins, including degradation via macroautophagy (hereafter called autophagy). This essential cellular pathway is conserved from yeast to humans and it is well established that its impairment reduces lifespan in multiple model organisms, including worms, flies and mice. In our study, recently published in Nature Communications, we asked if longer lifespan characteristic of higher organisms is the result of evolutionary adaptations to the autophagy machinery. We found that the autophagy receptor p62 can be oxidised leading to its oligomerisation which ultimately promotes autophagy. However this mechanism, present in vertebrates, has been acquired late in evolution. We propose that the ability of p62 to sense reactive oxygen species (ROS) via oxidation, and potentially other similar modifications, may have evolved in higher organisms and contributed to their increased lifespan. Indeed, impairment of this process could result in age-related neurodegeneration in humans.

9.
Essays Biochem ; 61(6): 565-584, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233869

RESUMO

Cells and organisms must coordinate their metabolic activity with changes in their environment to ensure their growth only when conditions are favourable. In order to maintain cellular homoeostasis, a tight regulation between the synthesis and degradation of cellular components is essential. At the epicentre of the cellular nutrient sensing is the mechanistic target of rapamycin complex 1 (mTORC1) which connects environmental cues, including nutrient and growth factor availability as well as stress, to metabolic processes in order to preserve cellular homoeostasis. Under nutrient-rich conditions mTORC1 promotes cell growth by stimulating biosynthetic pathways, including synthesis of proteins, lipids and nucleotides, and by inhibiting cellular catabolism through repression of the autophagic pathway. Its close signalling interplay with the energy sensor AMP-activated protein kinase (AMPK) dictates whether the cell actively favours anabolic or catabolic processes. Underlining the role of mTORC1 in the coordination of cellular metabolism, its deregulation is linked to numerous human diseases ranging from metabolic disorders to many cancers. Although mTORC1 can be modulated by a number of different inputs, amino acids represent primordial cues that cannot be compensated for by any other stimuli. The understanding of how amino acids signal to mTORC1 has increased considerably in the last years; however this area of research remains a hot topic in biomedical sciences. The current ideas and models proposed to explain the interrelationship between amino acid sensing, mTORC1 signalling and autophagy is the subject of the present review.


Assuntos
Autofagia/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Aminoácidos/metabolismo , Animais , Autofagia/genética , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
10.
Stem Cells ; 35(11): 2305-2320, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28913923

RESUMO

Age-related macular degeneration (AMD) is the most common cause of blindness, accounting for 8.7% of all blindness globally. Vision loss is caused ultimately by apoptosis of the retinal pigment epithelium (RPE) and overlying photoreceptors. Treatments are evolving for the wet form of the disease; however, these do not exist for the dry form. Complement factor H polymorphism in exon 9 (Y402H) has shown a strong association with susceptibility to AMD resulting in complement activation, recruitment of phagocytes, RPE damage, and visual decline. We have derived and characterized induced pluripotent stem cell (iPSC) lines from two subjects without AMD and low-risk genotype and two patients with advanced AMD and high-risk genotype and generated RPE cells that show local secretion of several proteins involved in the complement pathway including factor H, factor I, and factor H-like protein 1. The iPSC RPE cells derived from high-risk patients mimic several key features of AMD including increased inflammation and cellular stress, accumulation of lipid droplets, impaired autophagy, and deposition of "drüsen"-like deposits. The low- and high-risk RPE cells respond differently to intermittent exposure to UV light, which leads to an improvement in cellular and functional phenotype only in the high-risk AMD-RPE cells. Taken together, our data indicate that the patient specific iPSC model provides a robust platform for understanding the role of complement activation in AMD, evaluating new therapies based on complement modulation and drug testing. Stem Cells 2017;35:2305-2320.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Macular/terapia , Raios Ultravioleta , Terapia Ultravioleta/métodos , Idoso , Animais , Fator H do Complemento/metabolismo , Humanos , Degeneração Macular/etiologia , Camundongos , Camundongos SCID
11.
Sci Rep ; 6: 31750, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27572704

RESUMO

2-Hydroxy-propyl-ß-cyclodextrin (HPßCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPßCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1(-/-)) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1(-/-) cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPßCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPßCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders.


Assuntos
Colesterol/metabolismo , Micelas , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Fosfatidiletanolaminas/farmacologia , Polietilenoglicóis/farmacologia , Solventes/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Animais , Células Cultivadas , Sinergismo Farmacológico , Fibroblastos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Knockout , Modelos Biológicos , Proteína C1 de Niemann-Pick , Proteínas/genética
12.
Autophagy ; 12(10): 1917-1930, 2016 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-27391408

RESUMO

SQSTM1/p62 (sequestosome 1) selectively targets polyubiquitinated proteins for degradation via macroautophagy and the proteasome. Additionally, SQSTM1 shuttles between the cytoplasmic and nuclear compartments, although its role in the nucleus is relatively unknown. Here, we report that SQSTM1 dynamically associates with DNA damage foci (DDF) and regulates DNA repair. Upon induction of DNA damage SQSTM1 interacts with FLNA (filamin A), which has previously been shown to recruit DNA repair protein RAD51 (RAD51 recombinase) to double-strand breaks and facilitate homologous recombination (HR). SQSTM1 promotes proteasomal degradation of FLNA and RAD51 within the nucleus, resulting in reduced levels of nuclear RAD51 and slower DNA repair. SQSTM1 regulates the ratio between HR and nonhomologous end joining (NHEJ) by promoting the latter at the expense of the former. This SQSTM1-dependent mechanism mediates the effect of macroautophagy on DNA repair. Moreover, nuclear localization of SQSTM1 and its association with DDF increase with aging and are prevented by life-span-extending dietary restriction, suggesting that an imbalance in the mechanism identified here may contribute to aging and age-related diseases.


Assuntos
Autofagia , Reparo do DNA , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Sequestossoma-1/metabolismo , Ubiquitina/metabolismo , Animais , Núcleo Celular/metabolismo , Dano ao DNA , Filaminas , Cinética , Camundongos Endogâmicos C57BL , Modelos Biológicos , Transporte Proteico , Proteólise , Rad51 Recombinase/metabolismo
13.
Biochim Biophys Acta ; 1861(4): 269-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26778751

RESUMO

Autophagy is a catabolic process with an essential function in the maintenance of cellular and tissue homeostasis. It is primarily recognised for its role in the degradation of dysfunctional proteins and unwanted organelles, however in recent years the range of autophagy substrates has also been extended to lipids. Degradation of lipids via autophagy is termed lipophagy. The ability of autophagy to contribute to the maintenance of lipo-homeostasis becomes particularly relevant in the context of genetic lysosomal storage disorders where perturbations of autophagic flux have been suggested to contribute to the disease aetiology. Here we review recent discoveries of the molecular mechanisms mediating lipid turnover by the autophagy pathways. We further focus on the relevance of autophagy, and specifically lipophagy, to the disease mechanisms. Moreover, autophagy is also discussed as a potential therapeutic target in several key lysosomal storage disorders.


Assuntos
Autofagia , Erros Inatos do Metabolismo Lipídico/metabolismo , Metabolismo dos Lipídeos , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Animais , Autofagia/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Metabolismo dos Lipídeos/genética , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/patologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
14.
PLoS Comput Biol ; 10(8): e1003728, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25166345

RESUMO

Cellular senescence, a state of irreversible cell cycle arrest, is thought to help protect an organism from cancer, yet also contributes to ageing. The changes which occur in senescence are controlled by networks of multiple signalling and feedback pathways at the cellular level, and the interplay between these is difficult to predict and understand. To unravel the intrinsic challenges of understanding such a highly networked system, we have taken a systems biology approach to cellular senescence. We report a detailed analysis of senescence signalling via DNA damage, insulin-TOR, FoxO3a transcription factors, oxidative stress response, mitochondrial regulation and mitophagy. We show in silico and in vitro that inhibition of reactive oxygen species can prevent loss of mitochondrial membrane potential, whilst inhibition of mTOR shows a partial rescue of mitochondrial mass changes during establishment of senescence. Dual inhibition of ROS and mTOR in vitro confirmed computational model predictions that it was possible to further reduce senescence-induced mitochondrial dysfunction and DNA double-strand breaks. However, these interventions were unable to abrogate the senescence-induced mitochondrial dysfunction completely, and we identified decreased mitochondrial fission as the potential driving force for increased mitochondrial mass via prevention of mitophagy. Dynamic sensitivity analysis of the model showed the network stabilised at a new late state of cellular senescence. This was characterised by poor network sensitivity, high signalling noise, low cellular energy, high inflammation and permanent cell cycle arrest suggesting an unsatisfactory outcome for treatments aiming to delay or reverse cellular senescence at late time points. Combinatorial targeted interventions are therefore possible for intervening in the cellular pathway to senescence, but in the cases identified here, are only capable of delaying senescence onset.


Assuntos
Senescência Celular/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Linhagem Celular , Simulação por Computador , Dano ao DNA/fisiologia , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Biologia de Sistemas , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA