RESUMO
The butyrate biosynthetic pathway not only contributes to electron management and energy generation in butyrate forming bacteria, but also confers evolutionary advantages to the host by inhibiting the growth of surrounding butyrate-sensitive microbes. While high butyrate levels induce toxic stress, effects of non-toxic levels on cell growth, health, metabolism, and sporulation remain unclear. Here, we show that butyrate stimulates cellular processes of Clostridium acetobutylicum, a model butyrate forming Firmicute. First, we deleted the 3-hydroxybutyryl-CoA dehydrogenase gene (hbd) from the C. acetobutylicum chromosome to eliminate the butyrate synthetic pathway and thus butyrate formation. A xylose inducible Cas9 cassette was chromosomally integrated and utilized for the one-step markerless gene deletions. Non-toxic butyrate levels significantly affected growth, health, and sporulation of C. acetobutylicum. After deleting spo0A, the gene encoding the master regulator of sporulation, Spo0A, and conducting butyrate addition experiments, we conclude that butyrate affects cellular metabolism through both Spo0A-dependent and independent mechanisms. We also deleted the hbd gene from the chromosome of the asporogenous C. acetobutylicum M5 strain lacking the pSOL1 plasmid to examine the potential involvement of pSOL1 genes on the observed butyrate effects. Addition of crotonate, the precursor of butyrate biosynthesis, to the hbd deficient M5 strain was used to probe the role of butyrate biosynthesis pathway in electron and metabolic fluxes. Finally, we found that butyrate addition can enhance the growth of the non-butyrate forming Clostridium saccharolyticum. Our data suggest that butyrate functions as a stimulator of cellular processes, like a growth factor, in C. acetobutylicum and potentially evolutionarily related Clostridium organisms.
RESUMO
Caproate (hexanoate) and other medium-chain fatty acids are valuable platform chemicals produced by processes utilizing petroleum or plant oil. Clostridium kluyveri, growing on short chain alcohols (notably ethanol) and carboxylic acids (such as acetate) is noted for its ability to perform chain elongation to produce 4- to 8-carbon carboxylates. C. kluyveri has been studied in monoculture and coculture conditions, which lead to relatively modest carboxylate titers after long fermentation times. To assess the biosynthetic potential of C. kluyveri for caproate production from sugars through coculture fermentations, in the absence of monoculture data in the literature suitable for our coculture experiments, we first explored C. kluyveri monocultures. Some monocultures achieved caproate titers of 150 to over 200 mM in 40-50 h with a production rate of 7.9 mM/h. Based on that data, we then explored two novel, syntrophic coculture partners for producing caproate from sugars: Clostridium acetobutylicum and Clostridium saccharolyticum. Neither species has been cocultured with C. kluyveri before, and both demonstrate promising results. Our experiments of C. kluyveri monocultures and C. kluyveri-C. saccharolyticum cocultures demonstrate exceptionally high caproate titers (145-200 mM), fast production rates (3.25-8.1 mM/h), and short fermentation times (18-45 h). These results represent the most caproate produced by a C. kluyveri coculture in the shortest known fermentation time. We also explored the possibility of heterologous cell fusion between the coculture pairs similar to the results seen previously in our group with C. acetobutylicum and Clostridium ljungdahlii. Fusion events were observed only in the C. acetobutylicum-C. kluyveri coculture pair, and we offer an explanation for the lack of fusion between C. saccharolyticum and C. kluyveri. This work supports the promise of coculture biotechnology for sustainable production of caproate and other platform chemicals.
RESUMO
The production of volatile industrial chemicals utilizing metabolically engineered extreme thermophiles offers the potential for processes with simultaneous fermentation and product separation. An excellent target chemical for such a process is acetone (Tb = 56°C), ideally produced from lignocellulosic biomass. Caldicellulosiruptor bescii (Topt 78°C), an extremely thermophilic fermentative bacterium naturally capable of deconstructing and fermenting lignocellulose, was metabolically engineered to produce acetone. When the acetone pathway construct was integrated into a parent strain containing the bifunctional alcohol dehydrogenase from Clostridium thermocellum, acetone was produced at 9.1 mM (0.53 g/L), in addition to minimal ethanol 3.3 mM (0.15 g/L), along with net acetate consumption. This demonstrates that C. bescii can be engineered with balanced pathways in which renewable carbohydrate sources are converted to useful metabolites, primarily acetone and H2 , without net production of its native fermentation products, acetate and lactate.
Assuntos
Acetona/metabolismo , Biomassa , Caldicellulosiruptor/metabolismo , Hidrogênio/metabolismo , Lignina/metabolismo , Engenharia Metabólica , Caldicellulosiruptor/genéticaRESUMO
The key difference in the modified Embden-Meyerhof glycolytic pathway in hyperthermophilic Archaea, such as Pyrococcus furiosus, occurs at the conversion from glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) where the typical intermediate 1,3-bisphosphoglycerate (1,3-BPG) is not present. The absence of the ATP-yielding step catalyzed by phosphoglycerate kinase (PGK) alters energy yield, redox energetics, and kinetics of carbohydrate metabolism. Either of the two enzymes, ferredoxin-dependent glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) or NADP+-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), responsible for this "bypass" reaction, could be deleted individually without impacting viability, albeit with differences in native fermentation product profiles. Furthermore, P. furiosus was viable in the gluconeogenic direction (growth on pyruvate or peptides plus elemental sulfur) in a ΔgapnΔgapor strain. Ethanol was utilized as a proxy for potential heterologous products (e.g., isopropanol, butanol, fatty acids) that require reducing equivalents (e.g., NAD(P)H, reduced ferredoxin) generated from glycolysis. Insertion of a single gene encoding the thermostable NADPH-dependent primary alcohol dehydrogenase (adhA) (Tte_0696) from Caldanaerobacter subterraneus, resulted in a strain producing ethanol via the previously established aldehyde oxidoreductase (AOR) pathway. This strain demonstrated a high ratio of ethanol over acetate (> 8:1) at 80 °C and enabled ethanol production up to 85 °C, the highest temperature for bio-ethanol production reported to date.
Assuntos
Pyrococcus furiosus , Fermentação , Gliceraldeído 3-Fosfato , Glicólise , Engenharia MetabólicaRESUMO
The extreme thermophile Caldicellulosiruptor bescii solubilizes and metabolizes the carbohydrate content of lignocellulose, a process that ultimately ceases because of biomass recalcitrance, accumulation of fermentation products, inhibition by lignin moieties, and reduction of metabolic activity. Deconstruction of low loadings of lignocellulose (5 g/L), either natural or transgenic, whether unpretreated or subjected to hydrothermal processing, by C. bescii typically results in less than 40% carbohydrate solubilization. Mild alkali pretreatment (up to 0.09 g NaOH/g biomass) improved switchgrass carbohydrate solubilization by C. bescii to over 70% compared to less than 30% for no pretreatment, with two-thirds of the carbohydrate content in the treated switchgrass converted to acetate and lactate. C. bescii grown on high loadings of unpretreated switchgrass (50 g/L) retained in a pH-controlled bioreactor slowly purged (τ = 80 hr) with growth media without a carbon source improved carbohydrate solubilization to over 40% compared to batch culture at 29%. But more significant was the doubling of solubilized carbohydrate conversion to fermentation products, which increased from 40% in batch to over 80% in the purged system, an improvement attributed to maintaining the bioreactor culture in a metabolically active state. This strategy should be considered for optimizing solubilization and conversion of lignocellulose by C. bescii and other lignocellulolytic microorganisms.
Assuntos
Firmicutes/metabolismo , Lignina/metabolismo , Biocombustíveis/microbiologia , Reatores Biológicos , Caldicellulosiruptor , Fermentação , Firmicutes/crescimento & desenvolvimento , Panicum/metabolismo , SolubilidadeRESUMO
One potential advantage of an extremely thermophilic metabolic engineering host (T opt ≥ 70°C) is facilitated recovery of volatile chemicals from the vapor phase of an active fermenting culture. This process would reduce purification costs and concomitantly alleviate toxicity to the cells by continuously removing solvent fermentation products such as acetone or ethanol, a process we are calling "bio-reactive distillation." Although extremely thermophilic heterologous metabolic pathways can be inspired by existing mesophilic versions, they require thermostable homologs of the constituent enzymes if they are to be utilized in extremely thermophilic bacteria or archaea. Production of acetone from acetyl-CoA and acetate in the mesophilic bacterium Clostridium acetobutylicum utilizes three enzymes: thiolase, acetoacetyl-CoA: acetate CoA transferase (CtfAB), and acetoacetate decarboxylase (Adc). Previously reported biocatalytic pathways for acetone production were demonstrated only as high as 55°C. Here, we demonstrate a synthetic enzymatic pathway for acetone production that functions up to at least 70°C in vitro, made possible by the unusual thermostability of Adc from the mesophile C. acetobutylicum, and heteromultimeric acetoacetyl-CoA:acetate CoA-transferase (CtfAB) complexes from Thermosipho melanesiensis and Caldanaerobacter subterraneus, composed of a highly thermostable α-subunit and a thermally labile ß-subunit. The three enzymes produce acetone in vitro at temperatures of at least 70°C, paving the way for bio-reactive distillation of acetone using a metabolically engineered extreme thermophile as a production host.
Assuntos
Acetona/metabolismo , Proteínas de Bactérias/metabolismo , Carboxiliases/metabolismo , Clostridium acetobutylicum/enzimologia , Biologia Sintética/métodos , Proteínas de Bactérias/genética , Carboxiliases/genética , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Estabilidade Enzimática , Temperatura Alta , Engenharia Metabólica , Redes e Vias Metabólicas/genéticaRESUMO
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.