Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Virol J ; 18(1): 184, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503522

RESUMO

BACKGROUND: The phenylalanine ammonia lyase genes play crucial role in plant response to biotic and abiotic stresses. In this study, we characterized the role of PAL genes in increasing resistance to the Cassava brown streak virus that causes the economically important cassava brown streak disease (CBSD) on cassava in Africa. METHODS: The whole transcriptomes of eight cassava varieties differing in resistance to CBSD were obtained at 1, 5 and 8 weeks after CBSV infection. RESULTS: Analysis of RNA-Seq data identified the overexpression of PAL1, PAL2, cinnamic acid and two chalcone synthase genes in CBSD-resistant cassava varieties, which was subsequently confirmed by RT-qPCR. The exogenous application of Acibenzolar-S-Methyl induced PAL1 gene expression to enhance resistance in the susceptible var. Kalawe. In contrast, the silencing of PAL1 by RNA interference led to increased susceptibility of the resistant var. Kaleso to CBSD. CONCLUSIONS: PAL1 gene of the phenylpropanoid pathway has a major role in inducing resistance to CBSD in cassava plants and its early induction is key for CBSD resistance.


Assuntos
Resistência à Doença , Manihot , Doenças das Plantas , Potyviridae , Resistência à Doença/genética , Manihot/genética , Manihot/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Potyviridae/patogenicidade
2.
Physiol Mol Plant Pathol ; 105: 77-87, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31007376

RESUMO

Here, we report a method to clean cassava plants from viral infections that cause cassava mosaic and brown streak diseases in Africa. Infected plants of resistant or tolerant varieties from Malawi, Mozambique, Kenya, Tanzania and Uganda were cleaned in the UK using a combination of tissue culture, chemotherapy and thermotherapy. In the first cycle of our virus-indexing procedure, we successfully cleaned 27 of the 31 varieties (87%), and after an additional three cleaning cycles, all plants were virus-free. Virus-free tissue-cultured plants were shipped back to Africa for distribution to farmers. This first cross-boundary effort provides important lessons for mitigating the two-major cassava viral diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA