RESUMO
We describe a multifactorial investigation of a SARS-CoV-2 outbreak in a large meat processing complex in Germany. Infection event timing, spatial, climate and ventilation conditions in the processing plant, sharing of living quarters and transport, and viral genome sequences were analyzed. Our results suggest that a single index case transmitted SARS-CoV-2 to co-workers over distances of more than 8 m, within a confined work area in which air is constantly recirculated and cooled. Viral genome sequencing shows that all cases share a set of mutations representing a novel sub-branch in the SARS-CoV-2 C20 clade. We identified the same set of mutations in samples collected in the time period between this initial infection cluster and a subsequent outbreak within the same factory, with the largest number of confirmed SARS-CoV-2 cases in a German meat processing facility reported so far. Our results indicate climate conditions, fresh air exchange rates, and airflow as factors that can promote efficient spread of SARS-CoV-2 via long distances and provide insights into possible requirements for pandemic mitigation strategies in industrial workplace settings.
Assuntos
COVID-19/epidemiologia , Surtos de Doenças , COVID-19/diagnóstico , COVID-19/transmissão , COVID-19/virologia , Indústria Alimentícia , Genótipo , Alemanha/epidemiologia , Humanos , Fases de Leitura Aberta/genética , Distanciamento Físico , RNA Viral/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Ventilação , Local de TrabalhoRESUMO
UNLABELLED: The human pathogen Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease, establishes lifelong latency upon infection. Murine gammaherpesvirus 68 (MHV68) is a well-established model for KSHV. Toll-like receptors (TLRs) play a crucial role for the innate immune response to pathogens. Although KSHV and MHV68 are detected by TLRs, studies suggest they modulate TLR4 and TLR9 signaling, respectively. In this study, we show that in bone marrow-derived macrophages (BMDMs), MHV68 did not induce a detectable proinflammatory cytokine response. Furthermore, MHV68 abrogated the response to TLR2, -4, -7, and -9 agonists in BMDMs. Similarly to observations with MHV68, infection with KSHV efficiently inhibited TLR2 signaling in THP-1 monocytes. Using a KSHV open reading frame (ORF) library, we found that K4.2, ORF21, ORF31, and the replication and transcription activator protein (RTA)/ORF50 inhibited TLR2-dependent nuclear factor kappa B (NF-κB) activation in HEK293 TLR2-yellow fluorescent protein (YFP)- and Flag-TLR2-transfected HEK293T cells. Of the identified ORFs, RTA/ORF50 strongly downregulated TLR2 and TLR4 signaling by reducing TLR2 and TLR4 protein expression. Confocal microscopy revealed that TLR2 and TLR4 were no longer localized to the plasma membrane in cells expressing RTA/ORF50. In this study, we have shown that the gammaherpesviruses MHV68 and KSHV efficiently downmodulate TLR signaling in macrophages and have identified a novel function of RTA/ORF50 in modulation of the innate immune response. IMPORTANCE: The Toll-like receptors (TLRs) are an important class of pattern recognition receptors of the innate immune system. They induce a potent proinflammatory cytokine response upon detection of a variety of pathogens. In this study, we found that the gammaherpesviruses murine gammaherpesvirus 68 (MHV68) and Kaposi's sarcoma-associated herpesvirus (KSHV) efficiently inhibit the TLR-mediated innate immune response. We further identified the KSHV-encoded replication and transcription activator protein (RTA) as a novel modulator of TLR signaling. Our data suggest that the gammaherpesviruses MHV68 and KSHV prevent activation of the innate immune response by targeting TLR signaling.
Assuntos
Citocinas/metabolismo , Gammaherpesvirinae/patogenicidade , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/patogenicidade , Inflamação/metabolismo , Inflamação/virologia , Receptores Toll-Like/metabolismo , Animais , Medula Óssea/metabolismo , Medula Óssea/virologia , Linhagem Celular , Citocinas/genética , Regulação para Baixo/genética , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Humanos , Inflamação/genética , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Monócitos/virologia , NF-kappa B/genética , NF-kappa B/metabolismo , Fases de Leitura Aberta/genética , Transdução de Sinais/genética , Receptores Toll-Like/genética , Transativadores/genética , Transativadores/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral/genética , Latência Viral/genéticaRESUMO
Recognition of nucleic acids by TLR9 requires its trafficking from the endoplasmic reticulum to endolysosomal compartments and its subsequent proteolytic processing. Both processes depend on interactions of TLR9 with the polytopic endoplasmic reticulum-resident protein UNC93B1. To examine the intracellular behavior of TLR9 in primary APCs, we generated transgenic mice expressing a TLR9-GFP fusion. The TLR9-GFP transgene is functional and is proteolytically processed in resting bone marrow-derived macrophages (BMDMs), dendritic cells, and B cells. Inhibition of cleavage impairs TLR9-dependent responses in all primary APCs analyzed. The kinetics of TLR9-GFP processing in BMDMs and B cells differs: in B cells, proteolysis occurs at a faster rate, consistent with an almost exclusive localization to endolysosomes at the resting state. In contrast to the joint requirement for cathepsins L and S for TLR9 cleavage in macrophages, TLR9-GFP cleavage depends on cathepsin L activity in B cells. As expected, in BMDMs and B cells from UNC93B1 (3d) mutant mice, cleavage of TLR9-GFP is essentially blocked, and the expression level of UNC93B1 appears tightly correlated with TLR9-GFP cleavage. We conclude that proteolysis is a universal requirement for TLR9 activation in the primary cell types tested, however the cathepsin requirement, rate of cleavage, and intracellular behavior of TLR9 varies. The observed differences in trafficking indicate the possibility of distinct modes of endosomal content sampling to facilitate initiation of TLR-driven responses in APCs.
Assuntos
Células Apresentadoras de Antígenos/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Animais , Linfócitos B/metabolismo , Células da Medula Óssea/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lisossomos/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Transgênicos , Estabilidade Proteica , Transporte Proteico , Proteólise , Transdução de Sinais , TransgenesRESUMO
Bromodomain protein 4 (Brd4) plays critical roles in development, cancer progression, and virus-host pathogenesis. To gain mechanistic insight into the various biological functions of Brd4, we performed a proteomic analysis to identify and characterize Brd4-associated cellular proteins. We found that the extraterminal (ET) domain, whose function has to date not been determined, interacts with NSD3, JMJD6, CHD4, GLTSCR1, and ATAD5. These ET-domain interactions were also conserved for Brd2 and Brd3, the other human BET proteins tested. We demonstrated that GLTSCR1, NSD3, and JMJD6 impart a pTEFb-independent transcriptional activation function on Brd4. NSD3 as well as JMJD6 is recruited to regulated genes in a Brd4-dependent manner. Moreover, we found that depletion of Brd4 or NSD3 reduces H3K36 methylation, demonstrating that the Brd4/NSD3 complex regulates this specific histone modification. Our results indicate that the Brd4 ET domain through the recruitment of the specific effectors regulates transcriptional activity. In particular, we show that one of these effectors, NSD3, regulates transcription by modifying the chromatin microenvironment at Brd4 target genes. Our study thus identifies the ET domain as a second important transcriptional regulatory domain for Brd4 in addition to the carboxyl-terminal domain (CTD) that interacts with pTEFb.
Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Sequência de Aminoácidos , Proteínas de Ciclo Celular , Linhagem Celular , Proteínas Cromossômicas não Histona , Humanos , Histona Desmetilases com o Domínio Jumonji , Dados de Sequência Molecular , Proteínas Nucleares/genética , Estrutura Terciária de Proteína/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
An essential step in the pathogenesis of human papillomavirus (HPV)-associated cancers is the dysregulated expression of the viral oncogenes. The papillomavirus E2 protein can silence the long control region (LCR) promoter that controls viral E6 and E7 oncogene expression. The mechanisms by which E2 represses oncogene expression and the cellular factors through which E2 mediates this silencing are largely unknown. We conducted an unbiased, genome-wide siRNA screen and series of secondary screens that identified 96 cellular genes that contribute to the repression of the HPV LCR. In addition to confirming a role for the E2-binding bromodomain protein Brd4 in E2-mediated silencing, we identified a number of genes that have not previously been implicated in E2 repression, including the demethylase JARID1C/SMCX as well as EP400, a component of the NuA4/TIP60 histone acetyltransferase complex. Each of these genes contributes independently and additively to E2-mediated silencing, indicating that E2 functions through several distinct cellular complexes to repress E6 and E7 expression.
Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica , Papillomavirus Humano 18/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas Virais/genética , Oxirredutases N-Desmetilantes/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , DNA Helicases/genética , Feminino , Inativação Gênica , Estudo de Associação Genômica Ampla , Células HeLa , Histona Desmetilases , Humanos , Proteínas Nucleares/genética , Proteínas Oncogênicas Virais/metabolismo , Oxirredutases N-Desmetilantes/genética , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia , Proteínas Virais/metabolismo , Replicação Viral/genéticaRESUMO
The bromodomain and ET domain (BET) proteins belong to a group of bromodomain proteins and bind acetylated histones. Two of the currently known members of this protein family were implicated in transcriptional regulation. The two most studied BET proteins Brd2 and Brd4 have been shown to bind to viral proteins of herpesviruses and papillomaviruses. These pathogens often take advantage of the cellular function of the BET proteins and exploit it for their own purposes. In some cases though, viral proteins were shown to adapt BET proteins to new virus specific functions. Additionally some retroviruses seem to encode proteins that mimic Brd4 functions and hijack Brd4-associated protein complexes to use them for their own transcription.
Assuntos
Antígenos Virais/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antígenos Virais/genética , Sítios de Ligação/genética , Proteínas de Ciclo Celular , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virologia , Fatores de Transcrição/genéticaRESUMO
This study systematically examined the viral long control region (LCR) activities and their responses to E2 for human papillomavirus (HPV) types 11, 16, and 18 as well as bovine papillomavirus 1 (BPV1) in a number of different cell types, including human cervical cancer cell lines, human oral keratinocytes, BJ fibroblasts, as well as CV1 cells. The study revealed cell- and virus-type specific differences among the individual LCRs and their regulation by E2. In addition, the integration of the LCR into the host genome was identified as a critical determinant for LCR activity and its response to E2. Collectively, these data indicate a more complex level of transcriptional regulation of the LCR by cellular and viral factors than previously appreciated, including a comparatively low LCR activity and poor E2 responsiveness for HPV16 in most human cells. This study should provide a valuable framework for future transcriptional studies in the papillomavirus field.
Assuntos
Alphapapillomavirus/metabolismo , Papillomavirus Bovino 1/metabolismo , Fibroblastos/virologia , Queratinócitos/virologia , Proteínas Oncogênicas Virais/metabolismo , Neoplasias do Colo do Útero/virologia , Alphapapillomavirus/genética , Animais , Papillomavirus Bovino 1/genética , Linhagem Celular , Chlorocebus aethiops , Feminino , Regulação Viral da Expressão Gênica/fisiologia , Humanos , Proteínas Oncogênicas Virais/genéticaRESUMO
The bromodomain protein Brd4 plays critical roles in cellular proliferation and cell cycle progression. In this study, we investigated the involvement of Brd4 in cell cycle regulation and observed aberrant chromosome segregation and failures in cytokinesis in cancer cells as well as in primary keratinocytes in which Brd4 has been knocked down by RNA interference. Suppression of Brd4 protein levels in proliferating cells decreased Aurora B protein and transcript levels and abolished its chromosomal distribution. In contrast, exogenous Brd4 expression stimulated Aurora B promoter reporter activity and upregulated endogenous Aurora B expression. Aurora B kinase is a chromosomal passenger protein that is essential for chromosome segregation and cytokinesis. Either overexpression of Aurora B or its inactivation can induce defects in centrosome function, spindle assembly, chromosome alignment, and cytokinesis in various cancer cells. The impaired regulation of Aurora B expression in human cells by Brd4 knockdown or overexpression coincided with mitotic catastrophe and multinucleation that are typically observed when Aurora B is inactivated or overexpressed. Overall, our data suggest that Brd4 is essential for the maintenance of the cell cycle progression mediated at least in part through the control of transcription of the Aurora B kinase cell cycle regulatory gene.
Assuntos
Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/metabolismo , Animais , Aurora Quinase B , Aurora Quinases , Proteínas de Ciclo Celular , Linhagem Celular , Proliferação de Células , Cromatina/metabolismo , Segregação de Cromossomos , Regulação para Baixo/genética , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Mitose , Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Supressão Genética , Transcrição GênicaRESUMO
Infection of mice with murine gammaherpesvirus 68 (MHV-68) provides a valuable animal model for gamma-2 herpesvirus (rhadinovirus) infection and pathogenesis. The MHV-68 orf73 protein has been shown to be required for the establishment of viral latency in vivo. This study describes a novel transcriptional activation function of the MHV-68 orf73 protein and identifies the cellular bromodomain containing BET proteins Brd2/RING3, Brd3/ORFX, and BRD4 as interaction partners for the MHV-68 orf73 protein. BET protein members are known to interact with acetylated histones, and Brd2 and Brd4 have been implicated in fundamental cellular processes, including cell cycle regulation and transcriptional regulation. Using MHV-68 orf73 peptide array assays, we identified Brd2 and Brd4 interaction sites in the orf73 protein. Mutation of one binding site led to a loss of the interaction with Brd2/4 but not the retinoblastoma protein Rb, to impaired chromatin association, and to a decreased ability to activate the BET-responsive cyclin D1, D2, and E promoters. The results therefore pinpoint the binding site for Brd2/4 in a rhadinoviral orf73 protein and suggest that the recruitment of a member of the BET protein family allows the MHV-68 orf73 protein to activate the promoters of G(1)/S cyclins. These findings point to parallels between the transcriptional activator functions of rhadinoviral orf73 proteins and papillomavirus E2 proteins.
Assuntos
Ciclo Celular/genética , Herpesviridae/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/genética , Herpesviridae/genética , Humanos , Camundongos , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteína do Retinoblastoma/metabolismo , Alinhamento de Sequência , Transcrição Gênica/genética , Proteínas Virais/genéticaRESUMO
The neuronal gene repressor REST/NRSF recruits corepressors, including CoREST, to modify histones and repress transcription. REST also functions as a tumor suppressor, but the mechanism remains unclear. We identified chromodomain on Y-like (CDYL) as a REST corepressor that physically bridges REST and the histone methylase G9a to repress transcription. Importantly, RNAi knockdown of REST, CDYL, and G9a, but not CoREST, induced oncogenic transformation of immortalized primary human cells and derepression of the proto-oncogene TrkC. Significantly, transgenic expression of TrkC also induced transformation. This implicates CDYL-G9a, but not CoREST, in REST suppression of transformation, possibly by oncogene repression. CDYL knockdown also augments transformation in a cell culture model of cervical cancer, where loss of heterozygosity of the CDYL locus occurs. These findings demonstrate molecular strategies by which REST carries out distinct biological functions via different corepressors and provide critical insights into the role of histone-modifying complexes in regulating cellular transformation.
Assuntos
Transformação Celular Neoplásica/genética , Regulação para Baixo/genética , Proteínas Metiltransferases/metabolismo , Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Correpressoras , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Células HeLa , Histona Metiltransferases , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Hidroliases , Lisina/metabolismo , Metilação , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus , Ligação Proteica , Proto-Oncogene Mas , Interferência de RNA , Receptor trkC/metabolismo , Transcrição GênicaRESUMO
The papillomavirus E2 protein is a critical viral regulatory protein with transcription, DNA replication, and genome maintenance functions. We have previously identified the cellular bromodomain protein Brd4 as a major E2-interacting protein and established that it participates in tethering bovine papillomavirus type 1 E2 and viral genomes to host cell mitotic chromosomes. We have also shown that Brd4 mediates E2-dependent transcriptional activation, which is strongly inhibited by the disruption of E2/Brd4 binding as well as by short hairpin RNA (shRNA) knockdown of Brd4 expression levels. Since several mutants harboring single amino acid substitutions within the E2 transactivation domain that are defective for both transcriptional transactivation and Brd4 binding are also defective for transcriptional repression, we examined the role of Brd4 in E2 repression of the human papillomavirus E6/E7 promoter. Surprisingly, in a variety of in vivo assays, including transcription reporter assays, HeLa cell proliferation and colony reduction assays, and Northern blot analyses, neither blocking of the binding of E2 to Brd4 nor shRNA knockdown of Brd4 affected the E2 repression function. Our study provides evidence for a Brd4-independent mechanism of E2-mediated repression and suggests that different cellular factors must be involved in E2-mediated transcriptional activation and repression functions.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Genoma Viral/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Replicação Viral/fisiologia , Substituição de Aminoácidos , Proteínas de Ciclo Celular , Cromossomos Humanos/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Mitose/fisiologia , Mutação de Sentido Incorreto , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Oncogênicas Virais/biossíntese , Proteínas Oncogênicas Virais/genética , Regiões Promotoras Genéticas/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Transativadores/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia , Ativação Transcricional/fisiologiaRESUMO
Kaposi's sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 is the causative agent of Kaposi's sarcoma, primary effusion lymphoma and the plasma-cell variant of multicentric Castleman's disease. Its alternatively spliced K15 gene encodes several membrane proteins with varying numbers of transmembrane domains. Two highly diverged alleles of the K15 gene, termed predominant (P) and minor (M), exist and share only 33 % amino acid identity with one another, but retain conserved putative src homology (SH) 2- and SH3-binding motifs. K15-M is thought to have entered the KSHV genome as the result of recombination with a related gamma(2)-herpesvirus. The more common K15-P allele has been shown to activate the mitogen-activated protein kinases Erk2 and JNK1 and the nuclear factor kappaB (NF-kappaB) pathway. To explore possible functional differences between K15-P and K15-M that might have influenced their spread in the KSHV population, here, the ability of the M form of K15 to activate these pathways was investigated. Similarly to K15-P, K15-M induces the activation of the Erk2 and JNK1 kinases, the NF-kappaB transcription factor and the expression of a similar range of cellular inflammatory genes, as assessed by gene-expression microarray studies and reporter assays. In epithelial cells, the activation of most K15-M target genes is impaired by mutagenesis of Y(490) in its SH2-binding motif Y(490)EEV, although this motif appears less important in endothelial cells. Therefore, K15-M and K15-P can trigger similar intracellular signalling pathways, despite their extensive sequence divergence.
Assuntos
Regulação da Expressão Gênica , Herpesvirus Humano 8/fisiologia , Sistema de Sinalização das MAP Quinases , Proteínas Virais/fisiologia , Alelos , Substituição de Aminoácidos , Linhagem Celular , Perfilação da Expressão Gênica , Genes Virais , Herpesvirus Humano 8/genética , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Virais/genéticaRESUMO
The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen 1 (LANA-1) is required for the replication of episomal viral genomes. Regions in its N-terminal and C-terminal domains mediate the interaction with host cell chromatin. Several cellular nuclear proteins, e.g., BRD2/RING3, histones H2A and H2B, MeCP2, DEK, and HP1alpha, have been suggested to mediate this interaction. In this work, we identify the double-bromodomain proteins BRD4 and BRD3/ORFX as additional LANA-1 interaction partners. The carboxy-terminal region of the short variant of BRD4 (BRD4S) containing the highly conserved extraterminal domain directly interacts with an element in the LANA-1 carboxy-terminal domain. We show that ectopically expressed BRD4S and BRD2/RING3 delay progression into the S phase of the cell cycle in epithelial and B-cell lines and increase cyclin E promoter activity. LANA-1 partly releases epithelial and B cells from a BRD4S- and BRD2/RING3-induced G1 cell cycle arrest and also promotes S-phase entry in the presence of BRD4S and BRD2/RING3. This is accompanied by a reduction in BRD4S-mediated cyclin E promoter activity. Our data are in keeping with the notion that the direct interaction of KSHV LANA-1 with BRD4 and other BRD proteins could play a role in the G1/S phase-promoting functions of KSHV LANA-1. Further, our data support a model in which the LANA-1 C terminus contributes to a functional attachment to acetylated histones H3 and H4 via BRD4 and BRD2, in addition to the recently demonstrated direct interaction (A. J. Barbera, J. V. Chodaparambil, B. Kelley-Clarke, V. Joukov, J. C. Walter, K. Luger, and K. M. Kaye, Science 311:856-861, 2006) of the LANA-1 N terminus with histones H2A and H2B.
Assuntos
Antígenos Virais/fisiologia , Fase G1/fisiologia , Herpesvirus Humano 8/patogenicidade , Proteínas Nucleares/fisiologia , Proteínas de Fusão Oncogênica/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Baculoviridae/genética , Sequência de Bases , Sítios de Ligação , Proteínas de Ciclo Celular , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Ciclina E/genética , Primers do DNA/genética , Variação Genética , Células HeLa , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/imunologia , Herpesvirus Humano 8/fisiologia , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fase S/fisiologia , Fatores de Transcrição , Ativação TranscricionalRESUMO
Latency-associated nuclear antigen 1 (LANA-1) of Kaposi's sarcoma-associated herpesvirus (KSHV) mediates the episomal replication of the KSHV genome, as well as transcriptional regulation, in latently infected cells. Interaction of LANA-1 with cellular chromatin is required for both these functions. An N-terminal heterochromatin-binding site in LANA-1 is essential for the replication and maintenance of latent episomes, as well as transcriptional regulation. We have recently described a C-terminal domain in LANA-1 that modulates the interaction with cellular interphase chromatin or elements of the nuclear matrix. Here, we used a series of LANA-1 deletion mutants to investigate the relationship between the different functions of LANA-1 and its interaction with the host chromatin-binding protein Brd2/RING3. Our findings suggest that the C-terminal chromatin-binding domain in LANA-1 is required for multiple LANA-1 functions, including the ability to bind to and replicate viral episomal DNA, to modulate transcription, and to interact with Brd2/RING3. Similar to the recently described tethering of bovine papillomavirus E2 protein to host chromatin via Brd4/MCAP, Brd2/RING3, another member of the Brd family of chromatin-binding proteins, therefore interacts with a chromatin-binding region of another viral latent nuclear protein and could play a role in its multiple functions.
Assuntos
Antígenos Virais/fisiologia , Herpesvirus Humano 8/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Sarcoma de Kaposi/virologia , Antígenos Virais/química , Antígenos Virais/metabolismo , Linhagem Celular , Cromatina/metabolismo , Infecções por Herpesviridae/virologia , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Fatores de Transcrição , Transcrição Gênica , Replicação ViralRESUMO
Human herpesvirus type 8, or Kaposi's sarcoma-associated herpesvirus (KSHV), is the only known human g(2) herpesvirus (rhadinovirus) and the most recently discovered tumor virus. KSHV is associated with Kaposi's sarcoma and two other lymphoproliferative disorders in the AIDS setting: primary effusion lymphoma and the plasma cell variant of multicentric Castleman's disease. This review offers an update on the epidemiology and the role of KSHV genes in the development of disease.
Assuntos
Herpesvirus Humano 8 , Linfoma Relacionado a AIDS/virologia , Sarcoma de Kaposi/virologia , Antivirais/uso terapêutico , Humanos , Linfoma Relacionado a AIDS/tratamento farmacológico , Linfoma Relacionado a AIDS/genética , Sarcoma de Kaposi/tratamento farmacológico , Sarcoma de Kaposi/genéticaRESUMO
Human herpesvirus type 8, or Kaposi's sarcoma-associated herpesvirus (KSHV), is the only known human g(2) herpesvirus (rhadinovirus) and the most recently discovered tumor virus. KSHV is associated with Kaposi's sarcoma and two other lymphoproliferative disorders in the AIDS setting: primary effusion lymphoma and the plasma cell variant of multicentric Castleman's disease. This review offers an update on the epidemiology and the role of KSHV genes in the development of disease.