Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35631775

RESUMO

Micronutrient deficiency affects half of the world's population, mostly in developing countries. Severe health issues such as anemia and inadequate growth in children below five years of age and pregnant women have been linked to mineral deficiencies (mostly zinc and iron). Improving the mineral content in staple crops, also known as mineral biofortification, remains the best approach to address mineral malnutrition. Barley is a staple crop in some parts of the world and is a healthy choice since it contains ß-glucan, a high dietary protein. Barley mineral biofortification, especially with zinc and iron, can be beneficial since barley easily adapts to marginalized areas and requires less input than other frequently consumed cereals. In this study, we analyzed zinc and iron content in 496 barley samples. The samples were genotyped with an Illumina 50 K SNP chip. Genome-wide association studies (GWAS) identified 62 SNPs and 68 SNPs (p < 0.001) associated with iron and zinc content in grains, respectively. After a Bonferroni correction (p < 0.005), there were 12 SNPs (single-nucleotide polymorphism) associated with Zn and 6 for iron. SNP annotations revealed proteins involved in membrane transport, Zn and Fe binding, linked to nutrient remobilization in grains. These results can be used to develop biofortified barley via marker-assisted selection (MAS), which could alleviate mineral malnutrition.

2.
3 Biotech ; 6(1): 97, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28330167

RESUMO

Genetic characterization, diversity analysis and estimate of the genetic relationship among varieties using functional and random DNA markers linked to agronomic traits can provide relevant guidelines in selecting parents and designing new breeding strategies for marker-assisted wheat cultivar improvement. Here, we characterize 20 Moroccan and 19 exotic bread wheat (Triticum aestivum L.) cultivars using 47 functional and 7 linked random DNA markers associated with 21 loci of the most important traits for wheat breeding. The functional marker analysis revealed that 35, 45, and 10 % of the Moroccan cultivars, respectively have the rust resistance genes (Lr34/Yr18/Pm38), dwarfing genes (Rht1b or Rht2b alleles) and the leaf rust resistance gene (Lr68). The marker alleles for genes Lr37/Yr17/Sr38, Sr24 and Yr36 were present only in the exotic cultivars and absent in Moroccan cultivars. 25 % of cultivars had 1BL.1RS translocation. 70 % of the wheat cultivars had Ppo-D1a and Ppo-A1b associated with low polyphenol oxidase activity. 10 % of cultivars showed presence of a random DNA marker allele (175 bp) linked to Hessian fly resistance gene H22. The majority of the Moroccan cultivars were carrying alleles that impart good bread making quality. Neighbor joining (NJ) and principal coordinate analysis based on the marker data revealed a clear differentiation between elite Moroccan and exotic wheat cultivars. The results of this study are useful for selecting suitable parents for making targeted crosses in marker-assisted wheat breeding and enhancing genetic diversity in the wheat cultivars.

3.
J Exp Bot ; 62(2): 409-38, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21041372

RESUMO

Association mapping was used to dissect the genetic basis of drought-adaptive traits and grain yield (GY) in a collection of 189 elite durum wheat accessions evaluated in 15 environments highly different for water availability during the crop cycle (from 146 to 711 mm) and GY (from 9.9 to 67.3 q ha(-1)). For highly heritable traits (e.g. heading date, kernel weight, etc.) several significant experiment-wise marker-trait associations were detected across five or more (up to 13 for kernel weight) environments, with R(2) values ranging from ca. 5 to 10%. As to GY, significant associations (R(2) from 2.5 to 4.2%) were mostly detected in one environment only (56 markers), while decreasing rapidly from two to five environments (from 20 to three markers, respectively) and with only one marker (Xbarc197 on chr. 5A) found significant in six environments (ranging from low- to high-yielding). These results are probably due to the complex genetic basis of GY and its interaction with environmental conditions. The number of markers significantly affecting GY decreased considerably under drought conditions, suggesting a limited effectiveness of association mapping to identify loci for GY under low-moisture conditions, most likely because different genotypes can attain similar phenotypes via different morpho-physiological traits and corresponding gene networks. Our study confirmed the role of major loci for phenology previously described in biparental mapping populations, highlighted a novel set of loci for drought-adaptive traits, and provided information on the agronomic value of the alleles at such loci across a broad range of soil moisture conditions.


Assuntos
Triticum/genética , Triticum/metabolismo , Água/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genótipo , Fenótipo , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento
4.
J Exp Bot ; 60(10): 2817-25, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19516074

RESUMO

Increasing crop yields to ensure food security is a major challenge. Mutagenesis is an important tool in crop improvement and is free of the regulatory restrictions imposed on genetically modified organisms. The forward genetic approach enables the identification of improved or novel phenotypes that can be exploited in conventional breeding programmes. Powerful reverse genetic strategies that allow the detection of induced point mutations in individuals of the mutagenized populations can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for plant breeding. This review briefly discusses recent advances in the detection of mutants and the potential of mutagenesis for crop improvement.


Assuntos
Produtos Agrícolas/genética , Mutação , Produtos Agrícolas/fisiologia , Mutagênese , Proteínas de Plantas/genética
5.
Genetics ; 178(1): 489-511, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18202390

RESUMO

Grain yield is a major goal for the improvement of durum wheat, particularly in drought-prone areas. In this study, the genetic basis of grain yield (GY), heading date (HD), and plant height (PH) was investigated in a durum wheat population of 249 recombinant inbred lines evaluated in 16 environments (10 rainfed and 6 irrigated) characterized by a broad range of water availability and GY (from 5.6 to 58.8 q ha(-1)). Among the 16 quantitative trait loci (QTL) that affected GY, two major QTL on chromosomes 2BL and 3BS showed significant effects in 8 and 7 environments, with R2 values of 21.5 and 13.8% (mean data of all 16 environments), respectively. In both cases, extensive overlap was observed between the LOD profiles of GY and PH, but not with those for HD. QTL specific for PH were identified on chromosomes 1BS, 3AL, and 7AS. Additionally, three major QTL for HD on chromosomes 2AS, 2BL, and 7BS showed limited or no effects on GY. For both PH and GY, notable epistasis between the chromosome 2BL and 3BS QTL was detected across several environments.


Assuntos
Adaptação Fisiológica/genética , Grão Comestível/genética , Locos de Características Quantitativas/genética , Triticum/genética , Água/fisiologia , Cromossomos de Plantas/genética , Meio Ambiente , Epistasia Genética , Variação Genética , Endogamia , Escore Lod , Fenótipo , Triticum/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA