Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(34): 11965-11980, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37577968

RESUMO

First-principles calculations based on density-functional theory have been used to investigate the effect of biaxial strain and oxygen vacancy on the electronic, photocatalytic, and electrocatalytic properties of PbTiO3 oxide. Our results show that PbTiO3 has a high exciton binding energy and a band gap that can be easily moderated with different strain regimes. From a reactivity viewpoint, the highly exothermic adsorption of hydrogen atoms in both pristine and strained PbTiO3 structures does not make it a potential electrocatalyst for the hydrogen evolution reaction. Fortunately, the presence of oxygen vacancies on the PbTiO3 surface induces moderate adsorption energies, making the reduced PbTiO3 suitable for hydrogen evolution reaction processes.

2.
Phys Chem Chem Phys ; 19(34): 22887-22894, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28812745

RESUMO

The determination of kinetic factors affecting phase metastability is crucial for the design of materials out of the ambient conditions. At a given temperature, the kinetic barrier associated with the reconstruction of the bonding network of a pressure-induced phase transition can be only overcome at pressures where the available vibrational energy of the system is equal or higher than the corresponding activation energy. Our work demonstrates that these pressures provide boundaries to hysteresis cycles that can be evaluated following a three-step computational strategy: (i) total energy electronic structure calculations, (ii) determination of vibrational contributions by means of a simple Debye model, and (iii) description of the energetic profile along the transition path in the framework of the martensitic approximation. In the 3C-SiC polytype, our results reveal that the high pressure rock-salt (B1) structure can not be quenched on release of pressure unless temperature is close to 0 K. The B1 phase transforms back to the low-pressure zinc blende (B3) polymorph at 300 K if pressure is below 30 GPa, in very good agreement with experimental observations. These results are supported by a full characterization of the B3-B1 energetic transition profile in terms of the chemical changes of the bonding network topologically analysed with the electron localization function.

3.
Phys Chem Chem Phys ; 18(11): 8132-9, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26922870

RESUMO

The response of 3C-SiC to hydrostatic pressure and to several uni- and bi-axial stress conditions is thoroughly investigated using first principles calculations. A topological interpretation of the chemical bonding reveals that the so-called non-covalent interactions enhance only at high pressure while the nature of the covalent Si-C bonding network keeps essentially with the same pattern. The calculated low compressibility agrees well with experimental values and is in concordance with the high structural stability of this polymorph under hydrostatic pressure. Under uniaxial [001] stress, the c/a ratio shows a noticeable drop inducing a closure of the band gap and the emergence of a metallic state around 40 GPa. This behavior correlates with a plateau of the electron localization function exhibiting a roughly constant and non-negligible value surrounding CSi4 and SiC4 covalent bonded units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA