Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10805, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734711

RESUMO

The commissioning of multi-petawatt class laser facilities around the world is gathering pace. One of the primary motivations for these investments is the acceleration of high-quality, low-emittance electron bunches. Here we explore the interaction of a high-intensity femtosecond laser pulse with a mass-limited dense target to produce MeV attosecond electron bunches in transmission and confirm with three-dimensional simulation that such bunches have low emittance and nano-Coulomb charge. We then perform a large parameter scan from non-relativistic laser intensities to the laser-QED regime and from the critical plasma density to beyond solid density to demonstrate that the electron bunch energies and the laser pulse energy absorption into the plasma can be quantitatively described via the Zero Vector Potential mechanism. These results have wide-ranging implications for future particle accelerator science and associated technologies.

2.
Phys Rev Lett ; 130(10): 105002, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962018

RESUMO

The generation of low emittance electron beams from laser-driven wakefields is crucial for the development of compact x-ray sources. Here, we show new results for the injection and acceleration of quasimonoenergetic electron beams in low amplitude wakefields experimentally and using simulations. This is achieved by using two laser pulses decoupling the wakefield generation from the electron trapping via ionization injection. The injection duration, which affects the beam charge and energy spread, is found to be tunable by adjusting the relative pulse delay. By changing the polarization of the injector pulse, reducing the ionization volume, the electron spectra of the accelerated electron bunches are improved.

3.
Phys Rev E ; 106(1-2): 015205, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974572

RESUMO

A paradigm shift in the physics of laser-plasma interactions is approaching with the commissioning of multipetawatt laser facilities worldwide. Radiation reaction processes will result in the onset of electron-positron pair cascades and, with that, the absorption and partitioning of the incident laser energy, as well as the energy transport throughout the irradiated targets. To accurately quantify these effects, one must know the focused intensity on target in situ. In this work, a way of measuring the focused intensity on target is proposed based upon the ionization of xenon gas at low ambient pressure. The field ionization rates from two works [Phys. Rev. A 59, 569 (1999)1050-294710.1103/PhysRevA.59.569 and Phys. Rev. A 98, 043407 (2018)2469-992610.1103/PhysRevA.98.043407], where the latter rate has been derived using quantum mechanics, have been implemented in the particle-in-cell code SMILEI [Comput. Phys. Commun. 222, 351 (2018)0010-465510.1016/j.cpc.2017.09.024]. A series of one- and two-dimensional simulations are compared and shown to reproduce the charge states without presenting visible differences when increasing the simulation dimensionality. They provide a way to accurately verify the intensity on target using in situ measurements.

4.
Phys Rev E ; 105(4-2): 045208, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590581

RESUMO

The study of parametric instabilities has played a crucial role in understanding energy transfer to plasma and, with that, the development of key applications such as inertial confinement fusion. When the densities are between 0.11n_{c}≲n_{e}≲0.14n_{c} and the electron temperature is in inertial confinement fusion-relevant temperatures, anomalous hot electrons with kinetic energies above 100keV are generated. Here a new electron acceleration mechanism-the anti-Stokes Langmuir decay instability cascade of forward stimulated Raman scattering-is investigated. This mechanism potentially explains anomalous energetic electron generation in indirectly driven inertial confinement fusion experiments, it also provides a new way of accelerating electrons to higher energy for applications such as novel x-ray sources.

5.
Phys Rev E ; 104(4-2): 045201, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781464

RESUMO

Proton radiography is a widely fielded diagnostic used to measure magnetic structures in plasma. The deflection of protons with multi-MeV kinetic energy by the magnetic fields is used to infer their path-integrated field strength. Here the use of tomographic methods is proposed for the first time to lift the degeneracy inherent in these path-integrated measurements, allowing full reconstruction of spatially resolved magnetic field structures in three dimensions. Two techniques are proposed which improve the performance of tomographic reconstruction algorithms in cases with severely limited numbers of available probe beams, as is the case in laser-plasma interaction experiments where the probes are created by short, high-power laser pulse irradiation of secondary foil targets. A new configuration allowing production of more proton beams from a single short laser pulse is also presented and proposed for use in tandem with these analytical advancements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA