Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Talanta ; 276: 126292, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795646

RESUMO

In recent decades, analytical techniques have increasingly focused on the precise quantification. Achieving this goal has been accomplished with conventional analytical approaches that typically require extensive pretreatment methods, significant reagent usage, and expensive instruments. The need for rapid, simple, and highly selective identification platforms has become increasingly pronounced. Molecularly imprinted polymer (MIP) has emerged as a promising avenue for developing advanced sensors that can potentially surpass the limitations of conventional detection methods. In recent years, the application of MIP-silica materials-based sensors has garnered significant attention owing to their distinctive characteristics. These types of probes hold a distinct advantage in their remarkable stability and durability, all of which provide a suitable sensing platform in severe environments. Moreover, the substrate composed of silica materials offers a vast surface area for binding, thereby facilitating the efficient detection of even minuscule concentrations of targets. As a result, sensors based on MIP-silica materials have the potential to be widely applied in various industries, including medical diagnosis, and food safety. In the present review, we have conducted an in-depth analysis of the latest research developments in the field of MIPs-silica materials based sensors, with a focus on succinctly summarizing and elucidating the most crucial findings. This is the first comprehensive review of integration MIPs with silica materials in electrochemical (EC) and optical probes for biomedical analysis and food safety.


Assuntos
Inocuidade dos Alimentos , Polímeros Molecularmente Impressos , Dióxido de Silício , Dióxido de Silício/química , Polímeros Molecularmente Impressos/química , Técnicas Biossensoriais/métodos , Humanos , Impressão Molecular , Técnicas Eletroquímicas/métodos
2.
Cell Biochem Funct ; 42(1): e3921, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269511

RESUMO

This comprehensive article explores the complex field of glioma treatment, with a focus on the important roles of non-coding RNAsRNAs (ncRNAs) and exosomes, as well as the potential synergies of immunotherapy. The investigation begins by examining the various functions of ncRNAs and their involvement in glioma pathogenesis, progression, and as potential diagnostic biomarkers. Special attention is given to exosomes as carriers of ncRNAs and their intricate dynamics within the tumor microenvironment. The exploration extends to immunotherapy methods, analyzing their mechanisms and clinical implications in the treatment of glioma. By synthesizing these components, the article aims to provide a comprehensive understanding of how ncRNAs, exosomes, and immunotherapy interact, offering valuable insights into the evolving landscape of glioma research and therapeutic strategies.


Assuntos
Exossomos , Vesículas Extracelulares , Glioma , Humanos , Imunoterapia , Glioma/terapia , Microambiente Tumoral
3.
Cancer Cell Int ; 23(1): 88, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165384

RESUMO

PURPOSE: Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardiotoxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate the doxorubicin-induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silibinin against the doxorubicin-induced cardiotoxicity were systematically reviewed. METHODS: In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all relevant studies on "the role of silymarin/silibinin against doxorubicin-induced cardiotoxicity" in different electronic databases up to June 2022. Sixty-one articles were obtained and screened based on the predefined inclusion and exclusion criteria. Thirteen eligible papers were finally included in this review. RESULTS: According to the echocardiographic and electrocardiographic findings, the doxorubicin-treated groups presented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormalities were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin co-administration could mitigate these induced alterations (for most of the cases). CONCLUSION: According to the findings, it was found that the co-administration of silymarin/silibinin alleviates the doxorubicin-induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti-inflammatory, anti-apoptotic activities, and other mechanisms.

4.
Biophys Rev ; 15(6): 2027-2040, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38192345

RESUMO

Bone tissue engineering has become a popular area of study for making biomimetic hydrogels to treat bone diseases. In this work, we looked at biocompatible hydrogels that can be injected into bone defects that require the smallest possible surgery. Mineral ions can be attached to polymer chains to make useful hydrogels that help bones heal faster. These ions are very important for the balance of the body. In the chemically-triggered sector, advanced hydrogels cross-linked by different molecular agents have many advantages, such as being selective, able to form gels, and having mechanical properties that can be modified. In addition, different photo-initiators can be used to make photo cross linkable hydrogels react quickly and moderately under certain light bands. Enzyme-triggered hydrogels are another type of hydrogel that can be used to repair bone tissue because they are biocompatible and gel quickly. We also look at some of the important factors mentioned above that could change how well bone tissue engineering works as a therapy. Finally, this review summarizes the problems that still need to be solved to make clinically relevant hydrogels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA