Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770519

RESUMO

A porphyrin-based covalent organic framework (COF), namely Porph-UOZ-COF (UOZ stands for the University of Zabol), has been designed and prepared via the condensation reaction of 5,10,15,20-tetrakis-(3,4-dihydroxyphenyl)porphyrin (DHPP) with 1,4-benzenediboronic acid (DBBA), under the solvothermal condition. The solid was characterized by spectroscopic, microscopic, and powder X-ray diffraction techniques. The resultant multifunctional COF revealed an outstanding performance in catalyzing a one-pot tandem selective benzylic C-H photooxygenation/Knoevenagel condensation reaction in the absence of additives or metals under visible-LED-light irradiation. Notably, the catalytic activity of the COF was superior to individual organic counterparts and the COF was both stable and reusable for four consecutive runs. The present approach illustrates the potential of COFs as promising metal-free (photo) catalysts for the development of tandem reactions.

2.
J Colloid Interface Sci ; 561: 782-792, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31761467

RESUMO

A novel MIL-101(Cr) (MIL, Matérial Institut Lavoisier) supported propyl carboxylic acid, denoted here as MIL-101(Cr)-NH-CO-Pr-COOH, has been fabricated by post-synthetic modifications of nitro-functionalized MIL-101(Cr), MIL-101(Cr)-NO2. The resulting MOF was successfully characterized by using FT-IR, XRD, N2 adsorption-desorption, 1H NMR, SEM, ICP-OES, elemental analysis and TGA. Then, the prepared solid was used as an extremely highly effective multifunctional catalyst for the one-pot three-component synthesis of quinazolin-4(1H)-one derivatives as biologically active nitrogen heterocyclic compounds under solvent-free conditions. The important features of this methodology are good to excellent yields of products, the use of very small amounts of catalyst, short reaction time, non-requirement of organic solvents, and environmental benign and mild reaction conditions. Furthermore, turnover frequency was found to be in the range 3.5-50 h-1 under neat conditions, which is comparable to the reported previously for this reaction. Significantly, compared with the pristine MOF and the related homogenous catalysts, the MIL-10 1(Cr)-NHCO-Pr-COOH exhibited superior catalytic activity which can be attributed to the synergistic effect between isolated Lewis acidic Cr(III) nodes and Brønsted acidic free COOH groups in addition to the cooperative interplay of the Brønsted acid and the amine sites within the framework. More remarkably, MOF was stable and reusable up to three times without any changes in its activity and structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA