Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36850200

RESUMO

An interfacial adhesion improvement between low-density polyethylene (LDPE) and aluminum (Al) foil is an important challenge in designing multilayered packaging (TetraPak packaging type) due to insufficient inherent adhesion between both untreated materials. Therefore, extra adhesive layers are often used. The hydrophobic character of LDPE is responsible for poor adhesion to Al and can result in delamination. This study deals with the comparative study of the bulk modification of LDPE with various commercially available adhesive promoters with different chemical compositions to increase LDPE's adhesive characteristics and ensure good adhesion in LDPE/Al laminates. A copolymer of ethylene and methacrylic acid; a terpolymer of ethylene, maleic anhydride, and acrylic ester; or maleated polyethylene (PE) were used as adhesive promoters, and their effect on adhesion improvement of LDPE to Al was investigated. The best adhesion improvement was observed in LDPE-modified samples with maleated PE, while 0.1 wt.% additive content significantly increased peel resistance (from zero to 105 N/m). An additional increase in additive content (0.5 wt.%) in LDPE led to stronger adhesion forces than the cohesion forces in Al foil. Adding 0.5 wt.% of maleated PE into LDPE improved the LDPE/Al laminates' adhesion and can be applied in multilayered lamination applications.

2.
Polymers (Basel) ; 13(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204406

RESUMO

Foamed phase-change materials (FPCMs) were prepared using recycled linear low-density polyethylene (LLDPE) blended with 30 wt.% of paraffin wax (PW) and foamed by 1,1'-azobiscarbamide. The protection of pores' collapse during foaming process was insured through chemical cross-linking by organic peroxide prior foaming. This work represents one of very few attempts for a preparation of polymeric phase change foams without a use of micro-encapsulated phase change component leading to the enhancement of the real PCM component (PW) within a final product. The porous structure of fabricated foams was analyzed using micro-computed tomography, and direct observation, and reconstruction of the internal structure was investigated. The porosity of FPCMs was about 85-87 vol.% and resulting thermal conductivity 0.054-0.086 W/m·K. Differential Scanning Calorimetry was used to determine the specific enthalpies of melting (22.4-25.1 J/g) what is the latent heat of materials utilized during a heat absorption. A stability of samples during 10 heating/cooling cycles was demonstrated. The phase change changes were also investigated using the dynamic mechanical analysis from 0° to 65 °C during the 10 cycles, and the mechanical stability of the system and phase-change transition were clearly confirmed, as proved by DSC. Leaching test revealed a long-term release of PW (around 7% of its original content) from samples which were long term stored at temperatures over PW melting point. This is the usual problem concerning polymer/wax blends. The most common, industrially feasible solution is a lamination of products, for instance by aluminum foils. Finally, the measurement of the heat flow simulating the real conditions shows that samples containing PW decrease the energy passing through the sample from 68.56 to 34.88 kJ·m-2. In this respect, FPCMs provide very effective double functionality, firstly common thermal insulators, and second, as the heat absorbers acting through melting of the PW and absorbing the excessive thermal energy during melting. This improves the heat protection of buildings and reduces temperature fluctuations within indoor spaces.

3.
Polymers (Basel) ; 13(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923562

RESUMO

The low-density polyethylene/aluminum (LDPE/Al) joint in Tetra Pak provides stability and strength to food packaging, ensures protection against outside moisture, and maintains the nutritional values and flavors of food without the need for additives in the food products. However, a poor adhesion of LDPE to Al, due to its non-polar surface, is a limiting factor and extra polymeric interlayers or surface treatment is required. Plasma-assisted grafting of the LDPE surface with different molecular weight compounds of polyethylene glycol (PEG) was used to improve LDPE/Al adhesion. It was found that this surface modification contributed to significantly improve the wettability of the LDPE surface, as was confirmed by contact angle measurements. The chemical composition changes after plasma treatment and modification process were observed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). A surface morphology was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Adhesion characteristics of LDPE/Al adhesive joints were analyzed by the peel tests. The most significant adhesion improvement of the PEG modified LDPE surface was achieved using 10.0 wt.% aqueous (6000 M) PEG solution, while the peel resistance increased by approximately 54 times in comparison with untreated LDPE.

4.
Materials (Basel) ; 14(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652617

RESUMO

This paper addresses the preparation and characterization of efficient adsorbents for tertiary treatment (oil content below 100 ppm) of oil/water emulsions. Powdered low-density polyethylene (LDPE) was modified by radio-frequency plasma discharge and then used as a medium for the treatment of emulsified diesel oil/water mixtures in the concentration range from 75 ppm to 200 ppm. Plasma treatment significantly increased the wettability of the LDPE powder, which resulted in enhanced sorption capability of the oil component from emulsions in comparison to untreated powder. Emulsions formed from distilled water and commercial diesel oil (DO) with concentrations below 200 ppm were used as a model of oily polluted water. The emulsions were prepared using ultrasonication without surfactant. The droplet size was directly proportional to sonication time and ranged from 135 nm to 185 nm. A sonication time of 20 min was found to be sufficient to prepare stable emulsions with an average droplet size of approximately 150 nm. The sorption tests were realized in a batch system. The effect of contact time and initial oil concentrations were studied under standard atmospheric conditions at a stirring speed of 340 rpm with an adsorbent particle size of 500 microns. The efficiency of the plasma-treated LDPE powder in oil removal was found to be dependent on the initial oil concentration. It decreased from 96.7% to 79.5% as the initial oil concentration increased from 75 ppm to 200 ppm. The amount of adsorbed oil increased with increasing contact time. The fastest adsorption was observed during the first 30 min of treatment. The adsorption kinetics for emulsified oils onto sorbent followed a pseudo-second-order kinetic model.

5.
Molecules ; 24(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925735

RESUMO

An artificial aging study of novel heat absorbers based on phase change materials (PCMs) prepared from recycled high-density polyethylene (HDPE), paraffin wax (PW), and expanded graphite (EG) was investigated. The optimal composition of PCMs contained 40 wt% HDPE, whereas the paraffin wax content ranged from 40 to 60 wt% and the expanded graphite content ranged from 5 to 15 wt%. PCMs were artificially aged through exposure to UV irradiation, enhanced temperature, and humidity. It was clearly demonstrated that the addition of EG to PCMs led to the suppression of PW leakage and improved the photooxidation stability of the PCMs during the aging process. The best performance was achieved by adding 15 wt% of EG to the PCMs. The sample shows a leakage of paraffin wax below 10%, retaining a melting enthalpy of PW within PCMs of 54.8 J/g, a thermal conductivity of 1.64 W/mK and the lowest photooxidation, characterized by an increase in the concentration of carbonyl groups from all investigated materials after artificial aging. Furthermore, PCMs mixed with EG exhibited good mechanical properties, even after 100 days of exposure to artificial aging. Finally, this work demonstrates a justification for the use of recycled plastics in the formation of PCMs.


Assuntos
Grafite/química , Temperatura Alta , Parafina/química , Polietileno/química , Ceras/química , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Condutividade Térmica , Temperatura de Transição
6.
J Environ Manage ; 151: 105-12, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25546845

RESUMO

The treatment of spent caustic produced from an ethylene plant was investigated. In the case of neutralization alone it was found that the maximum removal of sulfide was at pH values below 5.5. The higher percentage removal of sulfides (99% at pH = 1.5) was accompanied with the highest COD removal (88%). For classical oxidation using H2O2 the maximum COD removal percentage reached 89% at pH = 2.5 and at a hydrogen peroxide concentration of 19 mM/L. For the advanced oxidation using Fenton's process it was found that the maximum COD removal of 96.5% was achieved at a hydrogen peroxide/ferrous sulfate ratio of (7:1).


Assuntos
Cáusticos/química , Etilenos/síntese química , Peróxido de Hidrogênio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Compostos Ferrosos , Resíduos Industriais/análise , Ferro , Oxirredução , Hidróxido de Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA