Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Quant Plant Biol ; 4: e1, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077702

RESUMO

Plant organ morphogenesis spans several orders of magnitude in time and space. Because of limitations in live-imaging, analysing whole organ growth from initiation to mature stages typically rely on static data sampled from different timepoints and individuals. We introduce a new model-based strategy for dating organs and for reconstructing morphogenetic trajectories over unlimited time windows based on static data. Using this approach, we show that Arabidopsis thaliana leaves are initiated at regular 1-day intervals. Despite contrasted adult morphologies, leaves of different ranks exhibited shared growth dynamics, with linear gradations of growth parameters according to leaf rank. At the sub-organ scale, successive serrations from same or different leaves also followed shared growth dynamics, suggesting that global and local leaf growth patterns are decoupled. Analysing mutants leaves with altered morphology highlighted the decorrelation between adult shapes and morphogenetic trajectories, thus stressing the benefits of our approach in identifying determinants and critical timepoints during organ morphogenesis.

2.
Development ; 143(18): 3417-28, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27387872

RESUMO

A major challenge in morphometrics is to analyse complex biological shapes formed by structures at different scales. Leaves exemplify this challenge as they combine differences in their overall shape with smaller shape variations at their margin, leading to lobes or teeth. Current methods based on contour or on landmark analysis are successful in quantifying either overall leaf shape or leaf margin dissection, but fail in combining the two. Here, we present a comprehensive strategy and its associated freely available platform for the quantitative, multiscale analysis of the morphology of leaves with different architectures. For this, biologically relevant landmarks are automatically extracted and hierarchised, and used to guide the reconstruction of accurate average contours that properly represent both global and local features. Using this method, we establish a quantitative framework of the developmental trajectory of Arabidopsis leaves of different ranks and retrace the origin of leaf heteroblasty. When applied to different mutant forms, our method can contribute to a better understanding of gene function, as we show here for the role of CUC2 during Arabidopsis leaf serration. Finally, we illustrate the wider applicability of our tool by analysing hand morphometrics.


Assuntos
Folhas de Planta/anatomia & histologia , Software , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microscopia de Fluorescência , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA