RESUMO
Feeding on mixed, alternating, or changing diets often favor insect development. With the aim to optimize mass rearing and use for the biological control of insect pests, we investigated the effects of various combinations of high-quality (the green peach aphid Myzus persicae) and low-quality (eggs of the grain moth Sitotroga cerealella) foods on the larval development of a predatory ladybird Cheilomenes propinqua. In the first experiment, eggs and aphids were mixed in different proportions; in the second experiment, larvae switched from feeding on aphids to feeding on eggs. Although the beneficial additive effect of mixed foods was detected in some treatments with limited diets, feeding on various combinations of eggs with aphids never resulted in higher survival, faster development, or a larger size of emerging adults than those observed for feeding on unlimited amounts of aphids. For the practice of biological control, we conclude that, if necessary (for example, in the case of temporary shortage or a lack of aphids in mass rearing facilities or in the case of preventing release of C. propinqua adults in greenhouses), C. propinqua larvae can be fed with grain moth eggs by replacing, mixing, or alternating with aphids, although this will inevitably result in a proportional decrease in pre-adult survival, rate of development, weight, and size of the emerging adults. On the other hand, even a minimal addition of aphids can have a substantial positive effect on larvae fed with grain moth eggs.
RESUMO
It is known that food has a double impact on females of predatory ladybirds: qualitative signal effect (the onset of oogenesis) and quantitative nutritional effect (the increase in oogenesis intensity). We compared the patterns of these effects by feeding Cheilomenes propinqua females on mixed diets: unlimited low-quality prey (eggs of the grain moth Sitotroga cerealella) and limited high-quality prey (the green peach aphid Myzus persicae: 0, 2, 10, and 50 aphids per day). About half of the females fed only on the grain moth eggs oviposited and their fecundity was very low. Daily consumption of 2 aphids increased the proportion of egg-laying females whereas only consumption of 10 aphids increased their mean fecundity. Thus, the threshold of the signal effect was lower than that of the nutritional effect. As applied to mass rearing, we conclude that the addition of high-quality prey to low-quality food causes a substantial increase in egg production, although the economic feasibility of this method is not clear. Regarding biological control of pests by preventing colonization, we conclude that the fecundity of C. propinqua females supplied with the grain moth eggs in the absence of aphids will be low but the appearance of pests will cause a proportional increase in the mean fecundity of ladybirds.