RESUMO
PURPOSE OF REVIEW: The purpose of this review is to summarize the evidence supporting a role of short-chain fatty acids (SCFAs) as messengers facilitating cross talk between the host and gut microbiota and discuss the effects of altered SCFA signaling in obesity and hypertension. RECENT FINDINGS: Recent evidence suggests there to be a significant contribution of gut microbiota-derived SCFAs to microbe:host communication and host metabolism. SCFA production within the intestine modulates intestinal pH, microbial composition, and intestinal barrier integrity. SCFA signaling through host receptors, such as PPARγ and GPCRs, modulates host health and disease physiology. Alterations in SCFA signaling and downstream effects on inflammation are implicated in the development of obesity and hypertension. SCFAs are crucial components of the holobiont relationship; in the proper environment, they support normal gut, immune, and metabolic function. Dysregulation of microbial SCFA signaling affects downstream host metabolism, with implications in obesity and hypertension.
Assuntos
Microbioma Gastrointestinal , Hipertensão , Microbiota , Ácidos Graxos Voláteis , Humanos , ObesidadeRESUMO
Parabens are a class of small molecules that are regularly used as preservatives in a variety of personal care products. Several parabens, including butylparaben and benzylparaben, have been found to interfere with endocrine signaling and to stimulate adipocyte differentiation. We hypothesized these biological effects could be due to interference with the endocannabinoid system and identified fatty acid amide hydrolase (FAAH) as the direct molecular target of parabens. FAAH inhibition by parabens yields mixed-type and time-independent kinetics. Additionally, structure activity relationships indicate FAAH inhibition is selective for the paraben class of compounds and the more hydrophobic parabens have higher potency. Parabens enhanced 3T3-L1 adipocyte differentiation in a dose dependent fashion, different from two other FAAH inhibitors URB597 and PF622. Moreover, parabens, URB597 and PF622 all failed to enhance AEA-induced differentiation. Furthermore, rimonabant, a cannabinoid receptor 1 (CB1)-selective antagonist, did not attenuate paraben-induced adipocyte differentiation. Thus, adipogenesis mediated by parabens likely occurs through modulation of endocannabinoids, but cell differentiation is independent of direct activation of CB1 by endocannabinoids.