Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38775752

RESUMO

OBJECTIVES: To characterize the genetic basis of azithromycin resistance in Escherichia coli and Salmonella collected within the EU harmonized antimicrobial resistance (AMR) surveillance programme in 2014-18 and the Danish AMR surveillance programme in 2016-19. METHODS: WGS data of 1007 E. coli [165 azithromycin resistant (MIC > 16 mg/L)] and 269 Salmonella [29 azithromycin resistant (MIC > 16 mg/L)] were screened for acquired macrolide resistance genes and mutations in rplDV, 23S rRNA and acrB genes using ResFinder v4.0, AMRFinder Plus and custom scripts. Genotype-phenotype concordance was determined for all isolates. Transferability of mef(C)-mph(G)-carrying plasmids was assessed by conjugation experiments. RESULTS: mph(A), mph(B), mef(B), erm(B) and mef(C)-mph(G) were detected in E. coli and Salmonella, whereas erm(C), erm(42), ere(A) and mph(E)-msr(E) were detected in E. coli only. The presence of macrolide resistance genes, alone or in combination, was concordant with the azithromycin-resistant phenotype in 69% of isolates. Distinct mph(A) operon structures were observed in azithromycin-susceptible (n = 50) and -resistant (n = 136) isolates. mef(C)-mph(G) were detected in porcine and bovine E. coli and in porcine Salmonella enterica serovar Derby and Salmonella enterica 1,4, [5],12:i:-, flanked downstream by ISCR2 or TnAs1 and associated with IncIγ and IncFII plasmids. CONCLUSIONS: Diverse azithromycin resistance genes were detected in E. coli and Salmonella from food-producing animals and meat in Europe. Azithromycin resistance genes mef(C)-mph(G) and erm(42) appear to be emerging primarily in porcine E. coli isolates. The identification of distinct mph(A) operon structures in susceptible and resistant isolates increases the predictive power of WGS-based methods for in silico detection of azithromycin resistance in Enterobacterales.

3.
Nucleic Acids Res ; 52(D1): D304-D310, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37986224

RESUMO

TarBase is a reference database dedicated to produce, curate and deliver high quality experimentally-supported microRNA (miRNA) targets on protein-coding transcripts. In its latest version (v9.0, https://dianalab.e-ce.uth.gr/tarbasev9), it pushes the envelope by introducing virally-encoded miRNAs, interactions leading to target-directed miRNA degradation (TDMD) events and the largest collection of miRNA-gene interactions to date in a plethora of experimental settings, tissues and cell-types. It catalogues ∼6 million entries, comprising ∼2 million unique miRNA-gene pairs, supported by 37 experimental (high- and low-yield) protocols in 172 tissues and cell-types. Interactions are annotated with rich metadata including information on genes/transcripts, miRNAs, samples, experimental contexts and publications, while millions of miRNA-binding locations are also provided at cell-type resolution. A completely re-designed interface with state-of-the-art web technologies, incorporates more features, and allows flexible and ingenious use. The new interface provides the capability to design sophisticated queries with numerous filtering criteria including cell lines, experimental conditions, cell types, experimental methods, species and/or tissues of interest. Additionally, a plethora of fine-tuning capacities have been integrated to the platform, offering the refinement of the returned interactions based on miRNA confidence and expression levels, while boundless local retrieval of the offered interactions and metadata is enabled.


Assuntos
Bases de Dados de Ácidos Nucleicos , MicroRNAs , Genes Virais/genética , Internet , MicroRNAs/genética , MicroRNAs/metabolismo , Animais
4.
Pathogens ; 9(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276526

RESUMO

Production and isolation of recombinant proteins are costly and work-intensive processes, especially in immunology when tens or hundreds of potential immunogens need to be purified for testing. Here we propose an alternative method for fast screening of immunogen candidates, based on genetic engineering of recombinant bacterial strains able to express and expose selected antigens on their outer membrane. In Actinobacillus pleuropneumoniae, a Gram-negative porcine pathogen responsible for extensive economic losses worldwide, we identified a conserved general secretion pathway (GSP) domain in the N-terminal part of the outer membrane protein ApfA (ApfA stem: ApfAs). ApfAs was used as an outer membrane anchor, to which potential immunogens can be attached. To enable confirmation of correct positioning, ApfAs, was cloned in combination with the modified acyl carrier protein (ACP) fluorescent tag ACP mini (ACPm) and the putative immunogen VacJ. The chimeric construct was inserted in the pMK-express vector, subsequently transformed into A. pleuropneumoniae for expression. Flow cytometry, fluorescence imaging and mass spectrometry analysis were employed to demonstrate that the outer membrane of the transformed strain was enriched with the chimeric ApfAs-ACPm-VacJ antigen. Our results confirmed correct positioning of the chimeric ApfAs-ACPm-VacJ antigen and supported this system's potential as platform technology enabling antigenic enrichment of the outer membrane of A. pleuropneumoniae.

5.
Microbiology (Reading) ; 166(9): 849-853, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32697188

RESUMO

Campylobacter jejuni is a major bacterial foodborne-pathogen. Ciprofloxacin is an important antibiotic for the treatment of C. jejuni, albeit high rates of fluoroquinolone resistance have limited its usefulness. Persister-cells are transiently antibiotic-tolerant fractions of bacterial populations and their occurrence has been associated with recalcitrant and persistent bacterial infections. Here, time-kill assays with ciprofloxacin (200×MIC, 25 µg ml-1) were performed in C. jejuni strains 81-176 and RM1221 and persister-cells were found. The frequency of survivors after 8 h of ciprofloxacin exposure was approx. 10-3 for both strains, while after 22 h the frequency was between 10-5-10-7, depending on the strain and growth-phase. Interestingly, the stationary-phase cultures did not display more persister-cells compared to exponential-phase cultures, in contrast to what has been observed in other bacterial species. Persister-cells after ampicillin exposure (100×MIC, 200 µg ml-1) were not detected, implying that persister-cell formation in C. jejuni is antibiotic-specific. In attempts to identify the mechanism of ciprofloxacin persister-cell formation, stringent or SOS responses were not found to play major roles. Overall, this study reports ciprofloxacin persister-cells in C. jejuni and challenges the notion of persister-cells as plainly dormant non-growing cells.


Assuntos
Antibacterianos/farmacologia , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/fisiologia , Ciprofloxacina/farmacologia , Ampicilina/farmacologia , Carga Bacteriana/efeitos dos fármacos , Campylobacter jejuni/genética , Campylobacter jejuni/crescimento & desenvolvimento , Dano ao DNA , Farmacorresistência Bacteriana , Tolerância a Medicamentos , Testes de Sensibilidade Microbiana , Resposta SOS em Genética
6.
Int J Antimicrob Agents ; 52(3): 390-396, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29906565

RESUMO

Development of new antibiotics is costly and time-consuming, and therefore increasing the efficacy of conventional antibiotics is extremely attractive. For the human pathogen, Staphylococcus aureus, inactivation of the ATP synthase increases its susceptibility to gentamicin (an aminoglycoside) 16-fold. Aminoglycosides are rarely used as monotherapy against S. aureus due to the risk of development of resistance and toxic effects. This study explored the possibility of enhancing the efficacy of aminoglycosides against S. aureus and other Gram-positive pathogens by inhibiting the ATP synthase with resveratrol, a polyphenolic ATP synthase inhibitor that is commonly used as a dietary supplement. Co-administration of subinhibitory concentrations of resveratrol increased the activity of aminoglycosides, including gentamicin, kanamycin, neomycin, streptomycin and tobramycin, up to 32-fold against S. aureus, while the effect was lower (2-4-fold reduction in minimum inhibitory concentration) for other Gram-positive pathogens (i.e. Staphylococcus epidermidis, Enterococcus faecium and Enterococcus faecalis). The mechanism by which resveratrol increases the efficacy of aminoglycosides appears to be unrelated to membrane hyperpolarization and disruption of membrane integrity, which have been associated previously with increased aminoglycoside susceptibility. These results demonstrate that inhibition of the ATP synthase increases the efficacy of aminoglycosides against important Gram-positive pathogens, and the ATP synthase should be explored further as a target that may extend the clinical applicability of aminoglycosides.


Assuntos
Complexos de ATP Sintetase/antagonistas & inibidores , Aminoglicosídeos/farmacologia , Resveratrol/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Quimioterapia Combinada , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA