Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 64(3): 287-97, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25384911

RESUMO

Effective therapy for advanced cancer often requires treatment of both primary tumors and systemic disease that may not be apparent at initial diagnosis. Numerous studies have shown that stimulation of the host immune system can result in the generation of anti-tumor immune responses capable of controlling metastatic tumor growth. Thus, there is interest in the development of combination therapies that both control primary tumor growth and stimulate anti-tumor immunity for control of metastatic disease and subsequent tumor growth. Photodynamic therapy (PDT) is an FDA-approved anticancer modality that has been shown to enhance anti-tumor immunity. Augmentation of anti-tumor immunity by PDT is regimen dependent, and PDT regimens that enhance anti-tumor immunity have been defined. Unfortunately, these regimens have limited ability to control primary tumor growth. Therefore, a two-step combination therapy was devised in which a tumor-controlling PDT regimen was combined with an immune-enhancing PDT regimen. To determine whether the two-step combination therapy enhanced anti-tumor immunity, resistance to subsequent tumor challenge and T cell activation and function was measured. The ability to control distant disease was also determined. The results showed that the novel combination therapy stimulated anti-tumor immunity while retaining the ability to inhibit primary tumor growth of both murine colon (Colon26-HA) and mammary (4T1) carcinomas. The combination therapy resulted in enhanced tumor-specific T cell activation and controlled metastatic tumor growth. These results suggest that PDT may be an effective adjuvant for therapies that fail to stimulate the host anti-tumor immune response.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Fotoquimioterapia/métodos , Animais , Antineoplásicos/farmacologia , Clorofila/análogos & derivados , Clorofila/farmacologia , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Éter de Diematoporfirina/farmacologia , Feminino , Ativação Linfocitária , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Fármacos Fotossensibilizantes/farmacologia , Distribuição Aleatória , Linfócitos T/imunologia , Transfecção
2.
Lasers Surg Med ; 43(7): 676-85, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22057495

RESUMO

BACKGROUND AND OBJECTIVE: Photodynamic therapy (PDT) is an anticancer modality approved for the treatment of early disease and palliation of late stage disease. PDT of tumors results in the generation of an acute inflammatory response. The extent and duration of the inflammatory response is dependent upon the PDT regimen employed and is characterized by rapid induction of proinflammatory cytokines, such as IL-6, and activation and mobilization of innate immune cells. The importance of innate immune cells in long-term PDT control of tumor growth has been well defined. In contrast the role of IL-6 in long-term tumor control by PDT is unclear. Previous studies have shown that IL-6 can diminish or have no effect on PDT antitumor efficacy. STUDY DESIGN/MATERIALS AND METHODS: In the current study we used mice deficient for IL-6, Il6(-/-) , to examine the role of IL-6 in activation of antitumor immunity and PDT efficacy by PDT regimens known to enhance antitumor immunity. RESULTS: Our studies have shown that elimination of IL-6 had no effect on innate cell mobilization into the treated tumor bed or tumor draining lymph node (TDLN) and did not affect primary antitumor T-cell activation by PDT. However, IL-6 does appear to negatively regulate the generation of antitumor immune memory and PDT efficacy against murine colon and mammary carcinoma models. The inhibition of PDT efficacy by IL-6 appears also to be related to regulation of Bax protein expression. Increased apoptosis was observed following treatment of tumors in Il6(-/-) mice 24 hours following PDT. CONCLUSIONS: The development of PDT regimens that enhance antitumor immunity has led to proposals for the use of PDT as an adjuvant treatment. However, our results show that the potential for PDT induced expression of IL-6 to enhance tumor survival following PDT must be considered.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/imunologia , Interleucina-6/metabolismo , Neoplasias Mamárias Experimentais/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Clorofila/análogos & derivados , Clorofila/imunologia , Clorofila/farmacocinética , Clorofila/farmacologia , Neoplasias do Colo/imunologia , Éter de Diematoporfirina/imunologia , Éter de Diematoporfirina/farmacocinética , Éter de Diematoporfirina/farmacologia , Feminino , Ativação Linfocitária/efeitos dos fármacos , Neoplasias Mamárias Experimentais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/efeitos dos fármacos , Fármacos Fotossensibilizantes/imunologia , Fármacos Fotossensibilizantes/farmacocinética , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Proteína X Associada a bcl-2/metabolismo
3.
Lasers Surg Med ; 38(5): 509-15, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16788921

RESUMO

BACKGROUND AND OBJECTIVES: Photodynamic therapy (PDT) efficacy appears to be enhanced in the presence of an intact immune system and PDT has been shown to augment anti-tumor immunity. The mechanisms leading to the enhancement of the host immune response to tumor are unclear. Anti-tumor immunity depends upon the presence of activated antigen presenting cells (APCs). These cells are activated by their recognition of components released by pathogens, viruses, dead cells, and the presence of pro-inflammatory mediators. Activated APCs stimulate the generation of cytokine secreting effector cells. Therefore, we have hypothesized that PDT generated inflammatory mediators and components released from tumor cells killed by PDT results in the activation of APCs capable of stimulating effector T-cell proliferation and cytokine secretion. STUDY DESIGN/MATERIALS AND METHODS: To determine the effect of PDT on APCs, tumor draining lymph nodes (TDLNs) of EMT6 or Colo 26 tumor bearing mice were isolated 24 hours after Photofrin-PDT and flow cytometry was used to detect the presence of APCs secreting the T cells stimulatory cytokine, IL-12. APCs were also isolated from TDLNs and used to stimulate T-cell proliferation and secretion of interferon-gamma (IFN-gamma). RESULTS: PDT results in an increase in IL-12 expressing APCs in the TDLN. This increase was accompanied by an increase in the ability of APCs isolated from TDLNs of PDT-treated mice to stimulate T-cell proliferation and T-cell secretion of IFN-gamma. CONCLUSIONS: Our results indicate that APCs isolated from PDT-treated mice exhibit an enhanced ability to stimulate T-cell proliferation and IFN-gamma secretion, suggesting that PDT results in increased APC activity.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Interferon gama/metabolismo , Interleucina-12/metabolismo , Fotoquimioterapia , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Éter de Diematoporfirina/farmacologia , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Fármacos Fotossensibilizantes/farmacologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA