Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Syndromol ; 15(4): 328-332, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39119451

RESUMO

Introduction: Lateral meningocele syndrome (LMS), also known as Lehman syndrome, is caused by pathogenic variants in exon 33 of NOTCH3. Variants in this final exon of NOTCH3 interrupt the regulatory PEST domain, leading to enhanced NOTCH3 signaling due to prolonged cellular half-life. Individuals with LMS are expected to have multiple lateral meningoceles, developmental delay, neonatal hypotonia, dysmorphic facial features, and feeding difficulties. Case Presentation: We report an 8-year-old male with a history of autism, feeding difficulties, developmental delay, severe intellectual disability, and self-injurious behavior. Genetic testing revealed a NOTCH3 c.6663C>G (p.Y2221*) pathogenic variant in exon 33, consistent with a diagnosis of LMS. A follow-up spine MRI showed a ventral sacral extradural arachnoid cyst but no lateral meningoceles. This individual's most recent exam noted multiple dysmorphic features including prominent metopic ridging, broad forehead, downslanting palpebral fissures, high-arched palate, long narrow philtrum, mild pectus excavatum, and wide-based gait. Discussion/Conclusion: This individual shares the dysmorphic facial features, ongoing G-tube dependence, failure to thrive, and developmental delay seen in other individuals with LMS. His lack of lateral meningoceles expands the phenotype for this condition, as all previously reported individuals with molecularly confirmed LMS had multiple lateral meningoceles before age 8 years with an average age of identification at 4 years.

2.
Psychiatr Genet ; 34(4): 86-90, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38842011

RESUMO

X-linked creatine transporter deficiency is caused by hemizygous or heterozygous pathogenic variants in SLC6A8 that cause neuropsychiatric symptoms because of impaired uptake of creatine into tissues throughout the body. Small cohorts have suggested that supplementation of creatine, arginine, and glycine can stop disease progression in males, but only six cases of supplementation in females have been published. Here, we present a female with a de-novo pathogenic SLC6A8 variant who had ongoing weight loss, mild intellectual disability, and neuropsychiatric symptoms. Magnetic resonance spectroscopy of the brain showed reduced creatine on all acquired spectra. The patient was started on creatine-monohydrate, l -arginine, and l -glycine supplementation, and she had significant symptomatic improvement within the following 3 weeks. After 8 months of supplementation, magnetic resonance spectroscopy showed improved creatine concentrations with normalizing semiquantitative ratios with other brain metabolites. Current data supports clinicians trialing creatine, arginine, and glycine supplements for female patients with creatine transporter deficiency.


Assuntos
Arginina , Creatina , Suplementos Nutricionais , Glicina , Deficiência Intelectual Ligada ao Cromossomo X , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores , Humanos , Feminino , Creatina/metabolismo , Creatina/deficiência , Glicina/metabolismo , Arginina/metabolismo , Arginina/uso terapêutico , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/tratamento farmacológico , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Encéfalo/metabolismo , Adulto , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Espectroscopia de Ressonância Magnética , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/tratamento farmacológico , Encefalopatias Metabólicas Congênitas , Proteínas de Membrana Transportadoras
3.
Ann Hum Genet ; 88(1): 86-100, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921557

RESUMO

INTRODUCTION: Joubert syndrome (JS) arises from defects of primary cilia resulting in potential malformations of the brain, kidneys, eyes, liver, and limbs. Several of the 35+ genes associated with JS have recognized genotype/phenotype correlations, but most genes have not had enough reported individuals to draw meaningful conclusions. METHODS: A PubMed literature review identified 688 individuals with JS across 32 genes and 112 publications to bolster known genotype/phenotype relationships and identify new correlations. All included patients had the "molar tooth sign" and a confirmed genetic diagnosis. Individuals were categorized by age, ethnicity, sex and the presence of developmental disability/intellectual disability, hypotonia, abnormal eye movements, ataxia, visual impairment, renal impairment, polydactyly, and liver abnormalities. RESULTS: Most genes demonstrated unique phenotypic profiles. Grouping proteins based on physiologic interactions established stronger phenotypic relationships that reflect known ciliary pathophysiology. Age-stratified data demonstrated that end-organ disease is progressive in JS. Most genes demonstrated a significant skew towards having variants with either residual protein function or no residual protein function. CONCLUSION: This cohort demonstrates that clinically meaningful genotype/phenotype relationships exist within most JS-related genes and can be referenced to allow for more personalized clinical care.


Assuntos
Anormalidades Múltiplas , Anormalidades do Olho , Doenças Renais Císticas , Humanos , Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Doenças Renais Císticas/genética , Anormalidades do Olho/genética , Retina/anormalidades , Proteínas/genética , Variação Biológica da População
4.
J Med Genet ; 60(10): 999-1005, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37185208

RESUMO

PURPOSE: ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder. METHODS: We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated. RESULTS: De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder. CONCLUSION: We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.


Assuntos
Deficiência Intelectual , Microcefalia , Heterotopia Nodular Periventricular , Humanos , Encéfalo/diagnóstico por imagem , Genótipo , Deficiência Intelectual/genética , Fenótipo , Convulsões/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA