Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pathol Clin Res ; 3(2): 115-122, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28451460

RESUMO

We sought to determine if adenosquamous proliferation of early cellular radial sclerosing lesions of the breast harbours hot spot mutations and to help clarify its relationship to low-grade adenosquamous carcinoma as a potential form of early neoplasia. Four low-grade adenosquamous carcinomas, early radial sclerosing lesions from 13 individuals, and 4 benign proliferative breast lesions were microdissected and assessed with a 50-gene Hot-spot cancer panel. Early radial sclerosing lesions were selectively microdissected concentrating on their adenosquamous proliferation (nidus). Hot spot mutations in PIK3CA were detected in ten (77% of) radial sclerosing lesions, in one low-grade adenosquamous carcinoma, and in usual ductal hyperplasia and apocrine adenosis. Over three quarters of individuals with cellular (adenosquamous proliferation rich) early radial sclerosing lesions tested harboured somatic mutations in PIK3CA suggesting that adenosquamous proliferation is a clonal lesion. Its relationship to low-grade adenosquamous carcinoma remains unclear in view of the small sample size and unmatched radial sclerosing lesions and low-grade adenosquamous carcinomas.

2.
Hum Mol Genet ; 25(24): 5311-5320, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798099

RESUMO

Retinoschisin, an octameric retinal-specific protein, is essential for retinal architecture with mutations causing X-linked retinoschisis (XLRS), a monogenic form of macular degeneration. Most XLRS-associated mutations cause intracellular retention, however a subset are secreted as octamers and the cause of their pathology is ill-defined. Therefore, here we investigated the solution structure of the retinoschisin monomer and the impact of two XLRS-causing mutants using a combinatorial approach of biophysics and cryo-EM. The retinoschisin monomer has an elongated structure which persists in the octameric assembly. Retinoschisin forms a dimer of octamers with each octameric ring adopting a planar propeller structure. Comparison of the octamer with the hexadecamer structure indicated little conformational change in the retinoschisin octamer upon dimerization, suggesting that the octamer provides a stable interface for the construction of the hexadecamer. The H207Q XLRS-associated mutation was found in the interface between octamers and destabilized both monomeric and octameric retinoschisin. Octamer dimerization is consistent with the adhesive function of retinoschisin supporting interactions between retinal cell layers, so disassembly would prevent structural coupling between opposing membranes. In contrast, cryo-EM structural analysis of the R141H mutation at ∼4.2Šresolution was found to only cause a subtle conformational change in the propeller tips, potentially perturbing an interaction site. Together, these findings support distinct mechanisms of pathology for two classes of XLRS-associated mutations in the retinoschisin assembly.


Assuntos
Proteínas do Olho/química , Proteínas do Olho/genética , Retinosquise/genética , Relação Estrutura-Atividade , Animais , Células COS , Chlorocebus aethiops , Microscopia Crioeletrônica , Proteínas do Olho/ultraestrutura , Humanos , Mutação/genética , Conformação Proteica , Multimerização Proteica , Retina/química , Retina/patologia , Retinosquise/patologia
3.
Cancer Res ; 74(18): 5277-5286, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25056120

RESUMO

Regulators of differentiated cell fate can offer targets for managing cancer development and progression. Here, we identify Runx2 as a new regulator of epithelial cell fate in mammary gland development and breast cancer. Runx2 is expressed in the epithelium of pregnant mice in a strict temporally and hormonally regulated manner. During pregnancy, Runx2 genetic deletion impaired alveolar differentiation in a manner that disrupted alveolar progenitor cell populations. Conversely, exogenous transgenic expression of Runx2 in mammary epithelial cells blocked milk production, suggesting that the decrease in endogenous Runx2 observed late in pregnancy is necessary for full differentiation. In addition, overexpression of Runx2 drove epithelial-to-mesenchymal transition-like changes in normal mammary epithelial cells, whereas Runx2 deletion in basal breast cancer cells inhibited cellular phenotypes associated with tumorigenesis. Notably, loss of Runx2 expression increased tumor latency and enhanced overall survival in a mouse model of breast cancer, with Runx2-deficient tumors exhibiting reduced cell proliferation. Together, our results establish a previously unreported function for Runx2 in breast cancer that may offer a novel generalized route for therapeutic interventions. Cancer Res; 74(18); 5277-86. ©2014 AACR.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Experimentais/patologia , Animais , Diferenciação Celular/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Estudos Transversais , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Estudos Longitudinais , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Gravidez
4.
Cell Rep ; 7(3): 661-71, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24767991

RESUMO

Mitosis is a moment of exquisite vulnerability for a metazoan cell. Failure to complete mitosis accurately can lead to aneuploidy and cancer initiation. Therefore, if the exit from mitosis is delayed, normal cells are usually removed by apoptosis. However, how failure to complete mitosis activates apoptosis is still unclear. Here, we demonstrate that a phosphorylated form of the BH3-only protein Bid regulates apoptosis if mitotic exit is delayed. Bid is phosphorylated on serine 66 as cells enter mitosis, and this phosphorylation is lost during the metaphase-to-anaphase transition. Cells expressing a nonphosphorylatable version of Bid or a BH3-domain mutant were resistant to mitotic-arrest-induced apoptosis. Thus, we show that Bid phosphorylation primes cells to undergo mitochondrial apoptosis if mitotic exit is delayed. Avoidance of this mechanism may explain the selective pressure for cancer cells to undergo mitotic slippage.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Mitocôndrias/metabolismo , Sequência de Aminoácidos , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/antagonistas & inibidores , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/química , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Mitose , Dados de Sequência Molecular , Paclitaxel/farmacologia , Fosfopeptídeos/análise , Fosforilação , RNA Interferente Pequeno/metabolismo
5.
Biophys Rev ; 6(2): 203-213, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28510180

RESUMO

Integrins are ubiquitously expressed cell surface receptors that play a critical role in regulating the interaction between a cell and its microenvironment to control cell fate. These molecules are regulated either via their expression on the cell surface or through a unique bidirectional signalling mechanism. However, integrins are just the tip of the adhesome iceberg, initiating the assembly of a large range of adaptor and signalling proteins that mediate the structural and signalling functions of integrin. In this review, we summarise the structure of integrins and mechanisms by which integrin activation is controlled. The different adhesion structures formed by integrins are discussed, as well as the mechanical and structural roles integrins play during cell migration. As the function of integrin signalling can be quite varied based on cell type and context, an in depth understanding of these processes will aid our understanding of aberrant adhesion and migration, which is often associated with human pathologies such as cancer.

6.
Biophys Rev ; 6(2): 191-202, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28510181

RESUMO

The correct control of cell fate decisions is critical for metazoan development and tissue homeostasis. It is established that the integrin family of cell surface receptors regulate cell fate by mediating cell-cell and cell-extracellular matrix (ECM) interactions. However, our understanding of how the different family members control discrete aspects of cell biology, and how this varies between tissues and is temporally regulated, is still in its infancy. An emerging area of investigation aims to understand how integrins translate changes in tension in the surrounding microenvironment into biological responses. This is particularly pertinent due to changes in the mechanical properties of the ECM having been linked to diseases, such as cancer. In this review, we provide an overview of the roles integrins play in important developmental processes, such as proliferation, polarity, apoptosis, differentiation and maintenance of "stemness". We also discuss recent advances in integrin mechanobiology and highlight the involvement of integrins and aberrant ECM in cancer.

7.
Front Physiol ; 4: 225, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23986719

RESUMO

Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumors are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs). Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarize what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.

8.
Mol Cell ; 49(5): 959-71, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23375500

RESUMO

The proapoptotic Bcl-2 protein Bax is predominantly found in the cytosol of nonapoptotic cells and is commonly thought to translocate to mitochondria following an apoptotic stimulus. The current model for Bax activation is that BH3 proteins bind to cytosolic Bax, initiating mitochondrial targeting and outer-membrane permeabilization. Here, we challenge this and show that Bax is constitutively targeted to mitochondria but in nonapoptotic cells is constantly translocated back to the cytosol. Using live-cell spinning-disk confocal imaging with a combination of FLIP, FRAP, and photoactivatable GFP-Bax, we demonstrate that disrupting adhesion-dependent survival signals slows the rate of Bax's dissociation from mitochondria, leading to its accumulation on the outer mitochondrial membrane. The overall accumulation of mitochondrial Bax following loss of survival signaling sensitizes cells to proapoptotic BH3 proteins. Our findings show that Bax is normally in a dynamic equilibrium between cytosol and mitochondria, enabling fluctuations in survival signals to finely adjust apoptotic sensitivity.


Assuntos
Apoptose , Citosol/metabolismo , Mitocôndrias/metabolismo , Proteína X Associada a bcl-2/genética , Animais , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Membranas Mitocondriais/metabolismo , Transfecção , Proteína X Associada a bcl-2/metabolismo
9.
J Carcinog Mutagen ; Suppl 142013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25328816

RESUMO

Cancer is a disease in which normal physiological processes are imbalanced, leading to tumour formation, metastasis and eventually death. Recent biological advances have led to the advent of targeted therapies to complement traditional chemotherapy and radiotherapy. However, a major problem still facing modern medicine is resistance to therapies, whether targeted or traditional. Therefore, to increase the survival rates of cancer patients, it is critical that we continue to identify molecular targets for therapeutic intervention. The Inhibitor of Apoptosis (IAP) proteins act downstream of a broad range of stimuli, such as cytokines and extracellular matrix interactions, to regulate cell survival, proliferation and migration. These processes are dysregulated during tumourigenesis and are critical to the metastatic spread of the disease. IAPs are commonly upregulated in cancer and have therefore become the focus of much research as both biomarkers and therapeutic targets. Here we discuss the roles that IAPs may play in cancer, and the potential benefits and pitfalls that targeting IAPs could have in the clinic.

10.
Development ; 139(23): 4405-15, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23132247

RESUMO

Notch and Wnt are highly conserved signalling pathways that are used repeatedly throughout animal development to generate a diverse array of cell types. However, they often have opposing effects on cell-fate decisions with each pathway promoting an alternate outcome. Commonly, a cell receiving both signals exhibits only Wnt pathway activity. This suggests that Wnt inhibits Notch activity to promote a Wnt-ON/Notch-OFF output; but what might underpin this Notch regulation is not understood. Here, we show that Wnt acts via Dishevelled to inhibit Notch signalling, and that this crosstalk regulates cell-fate specification in vivo during Xenopus development. Mechanistically, Dishevelled binds and directly inhibits CSL transcription factors downstream of Notch receptors, reducing their activity. Furthermore, our data suggest that this crosstalk mechanism is conserved between vertebrate and invertebrate homologues. Thus, we identify a dual function for Dishevelled as an inhibitor of Notch signalling and an activator of the Wnt pathway that sharpens the distinction between opposing Wnt and Notch responses, allowing for robust cell-fate decisions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Fosfoproteínas/metabolismo , Receptores Notch/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Animais , Células CHO , Linhagem Celular , Cricetinae , Proteínas Desgrenhadas , Epiderme/embriologia , Células HEK293 , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/antagonistas & inibidores , Receptores Notch/antagonistas & inibidores , Via de Sinalização Wnt , Proteínas de Xenopus/antagonistas & inibidores
11.
Opt Lett ; 35(13): 2236-8, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20596205

RESUMO

The field transmitted through disordered media is essentially a randomly sampled version of the incident field. Properties of the initial field can be recovered if this sampling function or transmission matrix is known. Here we demonstrate how the transmission matrix of a disordered material can be used to simultaneously measure the spectral and polarimetric properties of an optical field.

12.
BMC Dev Biol ; 10: 71, 2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20584313

RESUMO

BACKGROUND: Inhibitors-of-Apoptosis-Proteins (IAPs) are an evolutionarily conserved family of proteins capable of regulating several facets of apoptosis. IAPs are frequently dysregulated in cancer, but their role in the regulation of apoptosis during developmental processes is not fully understood. Here we examined the expression of IAPs during the post-natal development of the mouse mammary gland, which is a tissue that exhibits a profound induction of apoptosis during involution. RESULTS: Six out of eight mammalian IAP family members are expressed in the mammary gland. Notably, quantitative PCR and immunoblotting revealed that XIAP, c-IAP1 and c-IAP2 are down-regulated in pregnancy and lactation, and prior to the onset of involution. In cultured mammary epithelial cells (MECs), XIAP levels decreased in response to inhibition of growth factor signalling. Maintaining XIAP levels in MECs by expressing exogenous XIAP protected them from all apoptotic stimuli tested. CONCLUSIONS: These data suggest that the developmental regulation of IAP expression in vivo contributes to naturally occurring programmes of cell death.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Inibidoras de Apoptose/genética , Glândulas Mamárias Animais/crescimento & desenvolvimento , Animais , Regulação para Baixo , Feminino , Proteínas Inibidoras de Apoptose/metabolismo , Glândulas Mamárias Animais/metabolismo , Camundongos , Gravidez
13.
J Biol Chem ; 285(2): 1081-8, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19875445

RESUMO

Apoptosis is controlled by a signaling equilibrium between prosurvival and proapoptotic pathways, such that unwanted apoptosis is avoided, but when required it occurs rapidly and efficiently. Many apoptosis regulators display dual roles, depending upon whether a cell has received an apoptotic stimulus or not. Here, we identify a novel and unexpected function for X-linked inhibitor of apoptosis (XIAP) that occurs when apoptosis is triggered under physiological conditions. We show that in response to loss of survival signals provided by cell adhesion, endogenous XIAP translocates from the cytosol into a mitochondrial 400-kDa complex and that this occurs very early in the apoptosis process. Membrane-associated XIAP induces mitochondrial outer membrane permeabilization leading to cytochrome c and Smac release, which is dependent on Bax and Bak. Thus, although XIAP suppresses apoptosis in healthy cells, our data indicate that XIAP may contribute to it in response to a proapoptotic signal such as loss of extracellular matrix-dependent survival signaling. We suggest that, as with Bcl-2 family proteins, more diverse functions for XIAP exist than previously identified. Moreover, switching the function of proteins from anti- to proapoptotic forms may be a common theme in the efficient execution of cell death.


Assuntos
Apoptose/fisiologia , Citosol/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Citocromos c/genética , Citocromos c/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Permeabilidade , Transporte Proteico/fisiologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
14.
Curr Opin Cell Biol ; 21(5): 654-61, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19570669

RESUMO

A fundamental aspect in metazoans is the ability of a cell to recognise its positional context within a tissue. This is important in both development and homeostasis, where cell proliferation, differentiation and apoptosis are strictly controlled to form and maintain tissues. Much information has been generated on how cells receive and interpret adhesion-mediated signals. The non-receptor tyrosine kinase, Fak (focal adhesion kinase) has received much attention with regard to adhesion mediated signalling, including its role in survival. Survival signals are required to suppress the default pathway of apoptosis. The ultimate outcome of apoptotic signalling is the release of factors from the mitochondria into the cytosol. How the defined signalling pathways that control apoptosis converge on the mitochondria is an area with many unresolved questions.


Assuntos
Apoptose , Matriz Extracelular/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Animais , Adesão Celular , Humanos
15.
Breast Cancer Res ; 11(3): R41, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19563669

RESUMO

INTRODUCTION: Inhibitor of apoptosis (IAPs) proteins are a family of proteins that can block apoptosis in normal cells and have been suggested to cause resistance to apoptosis in cancer. Overexpression of oncogenic receptor tyrosine kinases is common in breast cancer; in particular 20% of all cases show elevated Her2. Despite clinical success with the use of targeted therapies, such as Trastuzumab, only up to 35% of Her2-positive patients initially respond. We reasoned that IAP-mediated apoptosis resistance might contribute to this insensitivity to receptor tyrosine kinase therapy, in particular ErbB antagonists. Here we examine the levels of IAPs in breast cancer and evaluate whether targeting IAPs can enhance apoptosis in response to growth factor receptor antagonists and TRAIL. METHODS: IAP levels were examined in a breast cancer cell line panel and in patient samples. IAPs were inhibited using siRNA or cell permeable mimetics of endogenous inhibitors. Cells were then exposed to TRAIL, Trastuzumab, Lapatinib, or Gefitinib for 48 hours. Examining nuclear morphology and staining for cleaved caspase 3 was used to score apoptosis. Proliferation was examined by Ki67 staining. RESULTS: Four members of the IAP family, Survivin, XIAP, cIAP1 and cIAP2, were all expressed to varying extents in breast cancer cell lines or tumours. MDAMB468, BT474 and BT20 cells all expressed XIAP to varying extents. Depleting the cells of XIAP overcame the intrinsic resistance of BT20 and MDAMB468 cells to TRAIL. Moreover, siRNA-based depletion of XIAP or use of a Smac mimetic to target multiple IAPs increased apoptosis in response to the ErbB antagonists, Trastuzumab, Lapatinib or Gefitinib in Her2-overexpressing BT474 cells, or Gefitinib in EGFR-overexpressing MDAMB468 cells. CONCLUSIONS: The novel findings of this study are that multiple IAPs are concomitantly expressed in breast cancers, and that, in combination with clinically relevant Her2 treatments, IAP antagonists promote apoptosis and reduce the cell turnover index of breast cancers. We also show that combination therapy of IAP antagonists with some pro-apoptotic agents (for example, TRAIL) enhances apoptosis of breast cancer cells. In some cases (for example, MDAMB468 cells), the enhanced apoptosis is profound.


Assuntos
Apoptose , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptor ErbB-2/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Biológicos , Receptor ErbB-2/antagonistas & inibidores , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA