RESUMO
Approximately 80% of the global cattle population is at risk of infestation and infection by ticks and tick-borne diseases (TTBDs). The economic losses from animal mortality, reduced production, vector control costs and animal treatment are very substantial, hence there is an urgent need to develop and deploy alternative vector control strategies. Breeding for host tick resistance has the potential for sustainable large-scale TTBD control especially in cattle. The gold standard method for phenotyping tick resistance in cattle is by counting ticks on the body but is very laborious and subjective. Better methods for phenotyping tick resistance more objectively, faster and at scale, are essential for selecting host genetic resistance to ticks. This study investigated the correlation between haematological cellular profiles and immunological responses (immunoglobulin E, IgE) and full body tick counts in herds of Bos indicus and Bos taurus following artificial tick challenge with Rhipicephalus decoloratus larvae. Fifty-four Friesian and Ayrshire (Bos taurus) and 52 East African Zebu (Bos indicus) calves were each infested with â¼2500 larvae. Near-replete adult female ticks (≥ 4.5 mm) were counted daily from Day 20-25. Blood and serum samples were obtained from each animal on Days 0 and 23 for cellular blood and IgE titre analysis, respectively. The indicine cattle were refractory to R. decoloratus infestation in comparison with the taurine breed (P < 0.0001). Repeated measurements of blood components pre-infestation revealed a significant (P < 0.05) association with tick count in IgE and red blood cells, haematocrit, and haemoglobin post-infestation. There was also a strong positive correlation between the tick counts and red blood cell numbers, haemoglobin, haematocrit, and IgE concentration (P < 0.0001) following tick challenge. The application of this approach to phenotype host resistance needs to be assessed using higher cattle numbers and with different tick species or genera.
RESUMO
A disease with clinical and post-mortem presentation similar to those seen in heartwater, a tick-borne disease of domestic and wild ruminants caused by the intracellular bacterium Ehrlichia ruminantium, was first reported in dromedary camels in Kenya in 2016; investigations carried out at the time to determine the cause were inconclusive. In the present study, we screened sera from Kenyan camels collected before (2015) and after (2020) the 2016 disease outbreak for antibodies to Ehrlichia spp. using an E. ruminantium polyclonal competitive ELISA (PC-ELISA). Median antibody levels were significantly higher (p < 0.0001) amongst camels originating from areas where the heartwater-like disease was reported than from disease-free areas, for animals sampled in both 2015 and 2020. Overall median seropositivity was higher in camels sampled in 2015 than in 2020, which could have been due to higher mean age in the former group. Camels that were PCR-positive for Candidatus Ehrlichia regneryi had significantly lower (p = 0.03) median antibody levels than PCR-negative camels. Our results indicate that Kenyan camels are frequently exposed to E. ruminantium from an early age, E. ruminantium was unlikely to have been the sole cause of the outbreak of heartwater-like disease; and Ca. E. regneryi does not appreciably cross-react with E. ruminantium in the PC-ELISA.