Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 106(2): 701-710, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34633239

RESUMO

Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici, is a major threat to wheat (Triticum spp.) production worldwide. The objective of this study was to determine the virulence of P. striiformis f. sp. tritici races prevalent in the main wheat growing regions of Kenya, which includes Mt. Kenya, Eastern Kenya, and the Rift Valley (Central, Southern, and Northern Rift). Fifty P. striiformis f. sp. tritici isolates collected from 1970 to 1992 and from 2009 to 2014 were virulence phenotyped with stripe rust differential sets, and 45 isolates were genotyped with sequence characterized amplified region (SCAR) markers to differentiate the isolates and identify aggressive strains PstS1 and PstS2. Virulence corresponding to stripe rust resistance genes Yr1, Yr2, Yr3, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, and Yr27 and the seedling resistance in genotype Avocet S were detected. Ten races were detected in the P. striiformis f. sp. tritici samples obtained from 1970 to 1992, and three additional races were detected from 2009 to 2014, with a single race being detected in both periods. The SCAR markers detected both Pst1 and Pst2 strains in the collection. Increasing P. striiformis f. sp. tritici virulence was found in the Kenyan P. striiformis f. sp. tritici population, and different P. striiformis f. sp. tritici race groups were found to dominate different wheat growing regions. Moreover, recent P. striiformis f. sp. tritici races in East Africa indicated possible migration of some race groups into Kenya from other regions. This study is important in elucidating P. striiformis f. sp. tritici evolution and virulence diversity and useful in breeding wheat cultivars with effective resistance to stripe rust.


Assuntos
Doenças das Plantas , Triticum , Quênia , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Puccinia , Triticum/microbiologia , Virulência/genética
2.
Sci Rep ; 11(1): 21415, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725387

RESUMO

Bread wheat (Triticum aestivum L.) cultivars adapted to specific environments and resistant to prevalent pathogens are preferred for obtaining high yield. This study aimed to identify wheat genotypes with superior grain yield (GY) and yield associated traits from 168 genotypes of International Maize and Wheat Improvement Center's 13th Stem Rust Resistance Screening Nursery evaluated over two seasons during 2019 and 2020 under high disease pressure of both stem rust (SR) and yellow rust (YR) in a 21 × 8 α-lattice design with 3 replications in Kenya. Effects due to seasons were significant for YRAud, SRAud, 1000-kernel weight (TKW), days to heading (DH), plant height (PH) and number of spikelets spike-1 (SS), while genotypes and genotypes × season interaction effects were significant for all traits except number of kernels spike-1. Respectively, heritability values of 0.95, 0.93, 0.87, 0.86, 0.77 and 0.75 were observed for area under disease progress curve for SR (SRAud), YR (YRAud), TKW, DH, biomass (BM) and GY. Path analysis showed positive direct effects on GY via PH, SS, BM, and TKW. Biplot analysis identified 16 genotypes with superior desirable traits GY, BM and harvest index. The SR contributed the highest reduction in GY and TKW while YR contributed the most reduction in BM. These identified genotypes with superior GY combined with adequate resistance to both SR and YR are potentially valuable resources for improvement of locally adapted wheat cultivars.


Assuntos
Grão Comestível/genética , Doenças das Plantas/genética , Triticum/genética , Alelos , Animais , Afídeos , Basidiomycota/genética , Biomassa , Pão , Clima , Estudo de Associação Genômica Ampla , Genótipo , Quênia , Fenótipo , Locos de Características Quantitativas , Análise de Regressão , Estações do Ano , Temperatura , Zea mays
3.
ScientificWorldJournal ; 2017: 8249532, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28255577

RESUMO

Harvesting stage of sweet sorghum (Sorghum bicolor L. Moench) cane is an important aspect in the content of sugar for production of industrial alcohol. Four sweet sorghum genotypes were evaluated for harvesting stage in a randomized complete block design. In order to determine sorghum harvest growth stage for bioethanol production, sorghum canes were harvested at intervals of seven days after anthesis. The genotypes were evaluated at different stages of development for maximum production of bioethanol from flowering to physiological maturity. The canes were crushed and juice fermented to produce ethanol. Measurements of chlorophyll were taken at various stages as well as panicles from the harvested canes. Dried kernels at 14% moisture content were also weighed at various stages. Chlorophyll, grain weight, absolute ethanol volume, juice volume, cane yield, and brix showed significant (p = 0.05) differences for genotypes as well as the stages of harvesting. Results from this study showed that harvesting sweet sorghum at stages IV and V (104 to 117 days after planting) would be appropriate for production of kernels and ethanol. EUSS10 has the highest ethanol potential (1062.78 l ha-1) due to excellent juice volume (22976.9 l ha-1) and EUSS11 (985.26 l ha-1) due to its high brix (16.21).


Assuntos
Carboidratos/análise , Etanol , Sorghum/crescimento & desenvolvimento , Sorghum/genética , Genótipo , Quênia , Fatores de Tempo
4.
ScientificWorldJournal ; 2016: 4060857, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27777968

RESUMO

The genotype and environment interaction influences the selection criteria of sorghum (Sorghum bicolor) genotypes. Eight sweet sorghum genotypes were evaluated at five different locations in two growing seasons of 2014. The aim was to determine the interaction between genotype and environment on cane, juice, and ethanol yield and to identify best genotypes for bioethanol production in Kenya. The experiments were conducted in a randomized complete block design replicated three times. Sorghum canes were harvested at hard dough stage of grain development and passed through rollers to obtain juice that was then fermented to obtain ethanol. Cane, juice, and ethanol yield was analyzed using the additive main effect and multiplication interaction model (AMMI) and genotype plus genotype by environment (GGE) biplot. The combined analysis of variance of cane and juice yield of sorghum genotypes showed that sweet sorghum genotypes were significantly (P < 0.05) affected by environments (E), genotypes (G) and genotype by environment interaction (GEI). GGE biplot showed high yielding genotypes EUSS10, ACFC003/12, SS14, and EUSS11 for cane yield; EUSS10, EUSS11, and SS14 for juice yield; and EUSS10, SS04, SS14, and ACFC003/12 for ethanol yield. Genotype SS14 showed high general adaptability for cane, juice, and ethanol yield.


Assuntos
Agricultura/métodos , Etanol/química , Interação Gene-Ambiente , Sorghum/genética , Meio Ambiente , Genótipo , Sorghum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA