Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32714899

RESUMO

The juice clarification, one of the key steps in juice processing, suffers from haze formation that results from residual phenolic compounds. In this study, laccase was immobilized on metal-chelated magnetic silica nanoparticles and used for continuous juice clarification in a magnetically stabilized fluidized bed (MSFB) assisted by alternating magnetic field. Furthermore, a new combination of laccase catalysis and microfiltration was developed for the juice clarification. Immobilized laccase provided high relative activity within broader ranges of pH and temperature compared to the free enzyme. Magnetic immobilized laccase exhibited the best reaction rate of 12.1 µmol g-1 min-1 for catechol oxidation under the alternating magnetic field of 400 Hz, 60 Gs. No activity loss occurred in immobilized laccase after 20 h continuous operation of juice treatment in MSFB under an alternating magnetic field. Combined with microfiltration after treatment with immobilized laccase, the color of apple juice was decreased by 33.7%, and the light transmittance was enhanced by 20.2%. Furthermore, only 16.3% of phenolic compounds and 15.1% of antioxidant activity was reduced for apple juice after the clarification. By this combination strategy, the apple juice possessed good freeze-thaw and thermal stability.

2.
Ultrason Sonochem ; 64: 105035, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32106069

RESUMO

The suitability of some non-linear kinetic models (Weibull {with or without tail}, Log-linear, Log-linear shoulder {with or without tail}, Biphasic linear, Logistic, Multi-target and Single-target models) were evaluated to determine the inactivation kinetics of inoculated E. coli, and natural microbiota (i.e. mesophilic aerobic bacteria, and mold and yeast) on cherry tomato treated with fixed multi-frequency ultrasound. Almost all the studied model fitted well (R2 ≥ 0.9) for the inactivation kinetics; however, the Weibull, Log-linear shoulder, and Biphasic linear model showed the highest statistical parameters (0.9 ≤ adj. R2 ≤ 0.99 and smallest RMSE and SSE values). All the three models could be used to compare the kinetic behavior of E. coli and the first two models for the kinetic behavior of mesophilic aerobic bacteria and mold and yeast during sonication treatment. Two distinctive inactivation curves were obtained for the mono-frequency and the multi-frequency (dual and tri-frequency) for all the microbial inactivation. The remarkable results obtained for dual and tri-frequency sonication shows to be an effective and promising alternative to the traditional microbial inactivation techniques and the common practice of using ultrasound with other sanitizing methods.


Assuntos
Escherichia coli/fisiologia , Viabilidade Microbiana , Microbiota , Modelos Biológicos , Solanum lycopersicum/microbiologia , Sonicação , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA