Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antib Ther ; 5(1): 11-17, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35059561

RESUMO

The most robust strategy in antibody discovery is the use of immunized animals and the ability to isolate and immortalize immune B-cells to hybridoma for further interrogation. However, capturing the full repertoire of an immunized animal is labor intensive, time consuming and limited in throughput. Therefore, techniques to directly mine the antibody repertoire of primary B-cells are of great importance in antibody discovery. In the current study, we present a method to isolate individual antigen-specific primary B-cells using the CellCellector™ single-cell isolation platform from XenoMouse® (XM) immunized with a recombinant therapeutic protein, EGFR. We screened a subset of CD138+ B-cells and identified 238 potential EGFR-specific B-cells from 1189 antibody-secreting cells (ASCs) and isolated 94 by CellCellector. We identified a diverse set of heavy chain complementarity-determining region sequences and cloned and expressed 20 into a standard human immunoglobulin G1 antibody format. We further characterized and identified 13 recombinant antibodies that engage soluble and native forms of EGFR. By extrapolating the method to all 400 000 CD138+ B-cells extracted from one EGFR immunized XM, a potential 1196 unique EGFR-specific antibodies could be discovered. CellCelector allows for interrogating the B-cell pool directly and isolating B-cells specific to the therapeutic target of interest. Furthermore, antibody sequences recovered from isolated B-cells engage the native and recombinant target, demonstrating the CellCellector can serve as a platform in antibody discovery.

2.
Sci Rep ; 10(1): 1130, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980674

RESUMO

Multi-pass membrane proteins are important targets of biologic medicines. Given the inherent difficulties in working with membrane proteins, we sought to investigate the utility of membrane scaffold protein nanodiscs as a means of solubilizing membrane proteins to aid antibody discovery. Using a model multi-pass membrane protein, we demonstrate how incorporation of a multi-pass membrane protein into nanodiscs can be used in flow cytometry to identify antigen-specific hybridoma. The use of target protein-loaded nanodiscs to sort individual hybridoma early in the screening process can reduce the time required to identify antibodies against multi-pass membrane proteins.


Assuntos
Anticorpos Monoclonais/imunologia , Citometria de Fluxo/métodos , Hibridomas/citologia , Imunoglobulina G/imunologia , Proteínas de Membrana/imunologia , Nanoestruturas , Animais , Especificidade de Anticorpos , Reações Antígeno-Anticorpo , Arcobacter/química , Proteínas de Bactérias/química , Sistemas de Liberação de Medicamentos , Hibridomas/imunologia , Camundongos , Modelos Moleculares , Canal de Sódio Disparado por Voltagem NAV1.7/química , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Solubilidade
3.
Nature ; 533(7602): 269-73, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27135929

RESUMO

Mitochondria from many eukaryotic clades take up large amounts of calcium (Ca(2+)) via an inner membrane transporter called the uniporter. Transport by the uniporter is membrane potential dependent and sensitive to ruthenium red or its derivative Ru360 (ref. 1). Electrophysiological studies have shown that the uniporter is an ion channel with remarkably high conductance and selectivity. Ca(2+) entry into mitochondria is also known to activate the tricarboxylic acid cycle and seems to be crucial for matching the production of ATP in mitochondria with its cytosolic demand. Mitochondrial calcium uniporter (MCU) is the pore-forming and Ca(2+)-conducting subunit of the uniporter holocomplex, but its primary sequence does not resemble any calcium channel studied to date. Here we report the structure of the pore domain of MCU from Caenorhabditis elegans, determined using nuclear magnetic resonance (NMR) and electron microscopy (EM). MCU is a homo-oligomer in which the second transmembrane helix forms a hydrophilic pore across the membrane. The channel assembly represents a new solution of ion channel architecture, and is stabilized by a coiled-coil motif protruding into the mitochondrial matrix. The critical DXXE motif forms the pore entrance, which features two carboxylate rings; based on the ring dimensions and functional mutagenesis, these rings appear to form the selectivity filter. To our knowledge, this is one of the largest membrane protein structures characterized by NMR, and provides a structural blueprint for understanding the function of this channel.


Assuntos
Caenorhabditis elegans/química , Canais de Cálcio/química , Motivos de Aminoácidos , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Microscopia Eletrônica , Mitocôndrias/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
4.
Protein Sci ; 25(5): 959-73, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26928605

RESUMO

By nature of conducting ions, transporting substrates and transducing signals, membrane channels, transporters and receptors are expected to exhibit intrinsic conformational dynamics. It is therefore of great interest and importance to understand the various properties of conformational dynamics acquired by these proteins, for example, the relative population of states, exchange rate, conformations of multiple states, and how small molecule ligands modulate the conformational exchange. Because small molecule binding to membrane proteins can be weak and/or dynamic, structural characterization of these effects is very challenging. This review describes several NMR studies of membrane protein dynamics, ligand-induced conformational rearrangements, and the effect of ligand binding on the equilibrium of conformational exchange. The functional significance of the observed phenomena is discussed.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Regulação Alostérica , Sítios de Ligação , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica
5.
Curr Opin Struct Biol ; 23(4): 547-54, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23628285

RESUMO

Membrane channels, transporters and receptors constitute essential means for cells to maintain homeostasis and communicate with the surroundings. Investigation of their molecular architecture and the dynamic process of transporting substrate or transmitting signals across the membrane barrier has been one of the frontiers in biomedical research. The past decade has seen numerous successes in the use of X-ray or electron crystallography in determining atomic-resolution structures of membrane proteins, and in some cases, even snapshots of different physiological states of the same protein have been obtained. But there are also many cases in which long-standing efforts to crystallize proteins have yet to succeed. Therefore we have practical needs for developing complementary biophysical tools such as NMR spectroscopy and electron microscopy for tackling these systems. This paper provides a number of key examples where the utility of solution NMR was pivotal in providing structural and functional information on ion channels and transporters.


Assuntos
Canais Iônicos/ultraestrutura , Bombas de Íon/ultraestrutura , Proteínas Mitocondriais/ultraestrutura , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas da Matriz Viral/ultraestrutura , Cristalografia por Raios X , Canais Iônicos/metabolismo , Transporte de Íons , Proteínas Mitocondriais/metabolismo , Transdução de Sinais , Proteína Desacopladora 1 , Proteínas da Matriz Viral/metabolismo
6.
Structure ; 19(11): 1655-63, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22078564

RESUMO

The M2 channel of influenza A is a target of the adamantane family antiviral drugs. Two different drug-binding sites have been reported: one inside the pore, and the other is a lipid-facing pocket. A previous study showed that a chimera of M2 variants from influenza A and B that contains only the pore-binding site is sensitive to amantadine inhibition, suggesting that the primary site of inhibition is inside the pore. To obtain atomic details of channel-drug interaction, we determined the structures of the chimeric channel with and without rimantadine. Inside the channel and near the N-terminal end, methyl groups of Val27 and Ala30 from four subunits form a hydrophobic pocket around the adamantane, and the drug amino group appears to be in polar contact with the backbone oxygen of Ala30. The structures also reveal differences between the drug-bound and -unbound states of the channel that can explain drug resistance.


Assuntos
Antivirais/química , Vírus da Influenza A , Rimantadina/química , Proteínas Virais de Fusão/química , Motivos de Aminoácidos , Sítios de Ligação , Lipossomos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Proteínas Virais de Fusão/antagonistas & inibidores , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/química
7.
Protein Sci ; 16(9): 1977-83, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17766390

RESUMO

Human phospholamban (PLN), a 30 kDa homopentamer in the sarcoplasmic reticulum (SR) membrane, controls the magnitude of heart muscle contraction and relaxation by regulating the calcium pumping activity of the SR Ca(2+)-ATPase (SERCA). When PLN is not phosphorylated, it binds and inhibits SERCA. Phosphorylation of PLN at S16 or T17 releases such inhibitory effect. It remains a matter of debate whether phosphorylation perturbs the structure of PLN, which in turn affects its interaction with SERCA. Here we examine by NMR spectroscopy the structure and dynamics of PLN pentamer with a physiologically relevant, phosphorylation-mimicking mutation, S16E. Based on extensive NMR data, including NOEs, dipolar couplings, and solvent exchange of backbone amides, we conclude that the phosphorylation-mimicking mutation does not perturb the pentamer structure. However, (15)N R(1) and R(2) relaxation rates and (15)N((1)H) NOEs suggest subtle differences in the dynamics of the extramembrane portion of the protein.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Substituição de Aminoácidos , Proteínas de Ligação ao Cálcio/genética , Humanos , Peso Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Serina/metabolismo , Relação Estrutura-Atividade
8.
Proc Natl Acad Sci U S A ; 102(31): 10870-5, 2005 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16043693

RESUMO

Contraction and relaxation of heart muscle cells is regulated by cycling of calcium between cytoplasm and sarcoplasmic reticulum. Human phospholamban (PLN), expressed in the sarcoplasmic reticulum membrane as a 30-kDa homopentamer, controls cellular calcium levels by a mechanism that depends on its phosphorylation. Since PLN was discovered approximately 30 years ago, extensive studies have aimed to explain how it influences calcium pumps and to determine whether it acts as an ion channel. We have determined by solution NMR methods the atomic resolution structure of an unphosphorylated PLN pentamer in dodecylphosphocholine micelles. The unusual bellflower-like assembly is held together by leucine/isoleucine zipper motifs along the membrane-spanning helices. The structure reveals a channel-forming architecture that could allow passage of small ions. The central pore gradually widens toward the cytoplasmic end as the transmembrane helices twist around each other and bend outward. The dynamic N-terminal amphipathic helices point away from the membrane, perhaps facilitating recognition and inhibition of the calcium pump.


Assuntos
Proteínas de Ligação ao Cálcio/química , Sequência de Aminoácidos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Humanos , Técnicas In Vitro , Canais Iônicos/química , Canais Iônicos/genética , Canais Iônicos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
9.
Methods Enzymol ; 394: 321-34, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15808226

RESUMO

The first steps toward undertaking an NMR structural study of a new protein is very often to purify the protein and then to acquire an HSQC or TROSY NMR spectrum, the quality of which is used to assess the feasibility of an NMR-based structural determination. Relatively few integral membrane proteins (IMPs) have been subjected even to this very preliminary stage of NMR analysis. Here, NMR feasibility testing methods are outlined that are tailored for hexahistidine-tagged IMPs that have been expressed in Escherichia coli. Generally applicable protocols are presented for expression testing, purification, and NMR sample preparation. A 2D TROSY pulse sequence that has been optimized for use with IMPs is also presented.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/química , Detergentes , Deutério , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Proteínas de Escherichia coli/química
10.
J Am Chem Soc ; 126(16): 5048-9, 2004 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15099070

RESUMO

Backbone nuclear magnetic resonance (NMR) assignments were achieved for diacylglycerol kinase (DAGK) in detergent micelles. DAGK is a homotrimeric integral membrane protein comprised of 121 residue subunits, each having three transmembrane segments. Assignments were made using TROSY-based pulse sequences. DAGK was found to be an almost exclusively helical protein. This work points to the feasibility of both solving the structure of DAGK using solution NMR methods and using NMR as a primary tool in structural studies of other helical integral membrane proteins of similar size and complexity.


Assuntos
Diacilglicerol Quinase/química , Proteínas de Membrana/química , Amidas/química , Sequência de Aminoácidos , Escherichia coli , Dados de Sequência Molecular , Peso Molecular , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Estrutura Secundária de Proteína
11.
Biochemistry ; 41(42): 12876-82, 2002 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-12379131

RESUMO

Prokaryotic diacylglycerol kinase (DAGK) functions as a homotrimer of 13 kDa subunits, each of which has three transmembrane segments. This enzyme is conditionally essential to some bacteria and serves as a model system for studies of membrane protein biocatalysis, stability, folding, and misfolding. In this work, the detailed topology and secondary structure of DAGK's N-terminus up through the loop following the first transmembrane domain were probed by NMR spectroscopy. Secondary structure was mapped by measuring 13C NMR chemical shifts. Residue-to-residue topology was probed by measuring 19F NMR relaxation rates for site-specifically labeled samples in the presence and absence of polar and hydrophobic paramagnetic probes. Most of DAGK's N-terminal cytoplasmic and first transmembrane segments are alpha-helical. The first and second transmembrane helices are separated by a short loop from residues 48 to 52. The first transmembrane segment extends from residues 32 to 48. Most of the N-terminal cytoplasmic domain lies near the interface but does not extend deeply into the membrane. Finally, catalytic activities measured for the single cysteine mutants before and after chemical labeling suggest that the N-terminal cytoplasmic domain likely contains a number of critical active site residues. The results, therefore, suggest that DAGK's active site lies very near to the water/bilayer interface.


Assuntos
Diacilglicerol Quinase/química , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Reagentes de Ligações Cruzadas/química , Cisteína/genética , Diacilglicerol Quinase/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Flúor , Gadolínio DTPA/química , Glucosídeos/química , Micelas , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/genética , Fosfatidilcolinas/química , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA