Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Ann Bot ; 133(7): 1007-1024, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38428030

RESUMO

BACKGROUND AND AIMS: Introgressive hybridization poses a challenge to taxonomic and phylogenetic understanding of taxa, particularly when there are high numbers of co-occurring, intercrossable species. The genus Quercus exemplifies this situation. Oaks are highly diverse in sympatry and cross freely, creating syngameons of interfertile species. Although a well-resolved, dated phylogeny is available for the American oak clade, evolutionary relationships within many of the more recently derived clades remain to be defined, particularly for the young and exceptionally diverse Mexican white oak clade. Here, we adopted an approach bridging micro- and macroevolutionary scales to resolve evolutionary relationships in a rapidly diversifying clade endemic to Mexico. METHODS: Ecological data and sequences of 155 low-copy nuclear genes were used to identify distinct lineages within the Quercus laeta complex. Concatenated and coalescent approaches were used to assess the phylogenetic placement of these lineages relative to the Mexican white oak clade. Phylogenetic network methods were applied to evaluate the timing and genomic significance of recent or historical introgression among lineages. KEY RESULTS: The Q. laeta complex comprises six well-supported lineages, each restricted geographically and with mostly divergent climatic niches. Species trees corroborated that the different lineages are more closely related to other species of Mexican white oaks than to each other, suggesting that this complex is polyphyletic. Phylogenetic networks estimated events of ancient introgression that involved the ancestors of three present-day Q. laeta lineages. CONCLUSIONS: The Q. laeta complex is a morphologically and ecologically related group of species rather than a clade. Currently, oak phylogenetics is at a turning point, at which it is necessary to integrate phylogenetics and ecology in broad regional samples to figure out species boundaries. Our study illuminates one of the more complicated of the Mexican white oak groups and lays groundwork for further taxonomic study.


Assuntos
Filogenia , Quercus , Hibridização Genética , México , Quercus/genética
2.
Mol Ecol ; 33(2): e17207, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37975486

RESUMO

The evolution of reproductive barriers, that is, the speciation process, implies the limitation of gene flow between populations. Different patterns of genomic differentiation throughout the speciation continuum may provide insights into the causal evolutionary forces of species divergence. In this study, we analysed a cryptic species complex of the genus Hetaerina (Odonata). This complex includes H. americana and H. calverti; however, in H. americana two highly differentiated genetic groups have been previously detected, which, we hypothesize, may correspond to different species with low morphological variation. We obtained single nucleotide polymorphism (SNP) data for 90 individuals belonging to the different taxa in the complex and carried out differentiation tests to identify genetic isolation. The results from STRUCTURE and discriminant analysis of principal components (DAPC), based on almost 5000 SNPs, confirmed the presence of three highly differentiated taxa. Also, we found FST values above 0.5 in pairwise comparisons, which indicates a considerable degree of genetic isolation among the suggested species. We also found low climatic niche overlap among all taxa, suggesting that each group occurs at specific conditions of temperature, precipitation and elevation. We propose that H. americana comprises two cryptic species, which may be reproductively isolated by ecological barriers related to niche divergence, since the morphological variation is minimal and, therefore, mechanical barriers are probably less effective compared to other related species such as H. calverti.


Assuntos
Especiação Genética , Odonatos , Humanos , Animais , Filogenia , Genoma , Genômica
3.
G3 (Bethesda) ; 14(2)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38113048

RESUMO

Plant resistance refers to the heritable ability of plants to reduce damage caused by natural enemies, such as herbivores and pathogens, either through constitutive or induced traits like chemical compounds or trichomes. However, the genetic architecture-the number and genome location of genes that affect plant defense and the magnitude of their effects-of plant resistance to arthropod herbivores in natural populations remains poorly understood. In this study, we aimed to unveil the genetic architecture of plant resistance to insect herbivores in the annual herb Datura stramonium (Solanaceae) through quantitative trait loci mapping. We achieved this by assembling the species' genome and constructing a linkage map using an F2 progeny transplanted into natural habitats. Furthermore, we conducted differential gene expression analysis between undamaged and damaged plants caused by the primary folivore, Lema daturaphila larvae. Our genome assembly resulted in 6,109 scaffolds distributed across 12 haploid chromosomes. A single quantitative trait loci region on chromosome 3 was associated with plant resistance, spanning 0 to 5.17 cM. The explained variance by the quantitative trait loci was 8.44%. Our findings imply that the resistance mechanisms of D. stramonium are shaped by the complex interplay of multiple genes with minor effects. Protein-protein interaction networks involving genes within the quantitative trait loci region and overexpressed genes uncovered the key role of receptor-like cytoplasmic kinases in signaling and regulating tropane alkaloids and terpenoids, which serve as powerful chemical defenses against D. stramonium herbivores. The data generated in our study constitute important resources for delving into the evolution and ecology of secondary compounds mediating plant-insect interactions.


Assuntos
Datura stramonium , Animais , Datura stramonium/genética , Herbivoria , Insetos , Ecologia , Plantas , Cromossomos
4.
Plants (Basel) ; 12(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005736

RESUMO

Anthropogenic disturbance of tropical humid forests leads to habitat loss, biodiversity decline, landscape fragmentation, altered nutrient cycling and carbon sequestration, soil erosion, pest/pathogen outbreaks, among others. Nevertheless, the impact of these alterations in multitrophic interactions, including host-pathogen and vector-pathogen dynamics, is still not well understood in wild plants. This study aimed to provide insights into the main drivers for the incidence of herbivory and plant pathogen damage, specifically, into how vegetation traits at the local and landscape scale modulate such interactions. For this purpose, in the tropical forest of Calakmul (Campeche, Mexico), we characterised the foliar damage caused by herbivores and pathogens in woody vegetation of 13 sampling sites representing a gradient of forest disturbance and fragmentation in an anthropogenic landscape from well preserved to highly disturbed and fragmented areas. We also evaluated how the incidence of such damage was modulated by the vegetation and landscape attributes. We found that the incidence of damage caused by larger, mobile, generalist herbivores, was more sensitive to changes in landscape configuration, while the incidence of damage caused by small and specialised herbivores with low dispersal capacity was more influenced by vegetation and landscape composition. In relation to pathogen symptoms, the herbivore-induced foliar damage seems to be the main factor related to their incidence, indicating the enormous importance of herbivorous insects in the modulation of disease dynamics across tropical vegetation, as they could be acting as vectors and/or facilitating the entry of pathogens by breaking the foliar tissue and the plant defensive barriers. The incidence of pathogen damage also responded to vegetation structure and landscape configuration; the incidence of anthracnose, black spot, and chlorosis, for example, were favoured in sites surrounded by smaller patches and a higher edge density, as well as those with a greater aggregation of semi-evergreen forest patches. Fungal pathogens were shown to be an important cause of foliar damage for many woody species. Our results indicate that an increasing transformation and fragmentation of the tropical forest of southern Mexico could reduce the degree of specialisation in plant-herbivore interactions and enhance the proliferation of generalist herbivores (chewers and scrapers) and of mobile leaf suckers, and consequently, the proliferation of some symptoms associated with fungal pathogens such as fungus black spots and anthracnose. The symptoms associated with viral and bacterial diseases and to nutrient deficiency, such as chlorosis, could also increase in the vegetation in fragmented landscapes with important consequences in the health and productivity of wild and cultivated plant species. This is a pioneering study evaluating the effect of disturbances on multitrophic interactions, offering key insights on the main drivers of the changes in herbivory interactions and incidence of plant pathogens in tropical forests.

5.
Am J Bot ; 110(12): e16251, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37843974

RESUMO

PREMISE: Phylogeographical studies are fundamental for understanding factors that influence the spatial distribution of genetic lineages within species. Population expansions and contractions, distribution shifts, and climate changes are among the most important factors shaping the genetic compositions of populations. METHODS: We investigated the phylogeography of an endemic oak, Quercus mexicana (Fagaceae), which has a restricted distribution in northeastern Mexico along the Sierra Madre Oriental and adjacent areas. Nuclear and chloroplast DNA microsatellite markers were used to describe the genetic diversity and structure of 39 populations of Q. mexicana along its entire distribution area. We tested whether population expansion or contraction events influenced the genetic diversity and structure of the species. We also modeled the historical distributional range of Q. mexicana (for the Mid Holocene, the Last Glacial Maximum, and the Last Interglacial) to estimate the extent to which climate fluctuations have impacted the distribution of this oak species. RESULTS: Our results revealed high genetic diversity and low genetic structure in Q. mexicana populations. Ecological niche models suggested historical fluctuations in the distributional range of Q. mexicana. Historical range changes, gene flow, and physical barriers seem to have played an important role in shaping the phylogeographic structure of Q. mexicana. CONCLUSIONS: Our study indicates that the genetic structure of Q. mexicana may have been the result of responses of oak trees not only to heterogeneous environments present in the Sierra Madre Oriental and adjacent areas, but also to elevational and latitudinal shifts in response to climate changes in the past.


Assuntos
DNA de Cloroplastos , Quercus , Filogeografia , DNA de Cloroplastos/genética , Quercus/genética , Variação Genética , México , Haplótipos/genética , Filogenia
6.
Am J Bot ; 110(4): e16157, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934453

RESUMO

PREMISE: Habitat fragmentation negatively affects population size and mating patterns that directly affect progeny fitness and genetic diversity; however, little is known about the effects of habitat fragmentation on dioecious, wind pollinated trees. We assessed the effects of habitat fragmentation on population sex ratios, genetic diversity, gene flow, mating patterns, and early progeny vigor in the tropical dioecious tree, Brosimum alicastrum. METHODS: We conducted our study in three continuous and three fragmented forest sites in a Mexican tropical dry forest. We used eight microsatellite loci to characterize the genetic diversity, gene flow via pollen distances, and mean relatedness of progeny. We compared early progeny vigor parameters of seedlings growing under greenhouse conditions. RESULTS: Sex ratios did not deviate from 1:1 between habitat conditions except for one population in a fragmented habitat, which was female biased. The genetic diversity of adult trees and their offspring was similar in both habitat conditions. Pollen gene flow distances were similar across habitat types; however, paternity correlations were greater in fragmented than in continuous habitats. Germination rates did not differ between habitat conditions; however, progeny from fragmented habitats produced fewer leaves and had a lower foliar area, total height, and total dry biomass than progeny from continuous habitats. CONCLUSIONS: Changes in mating patterns because of habitat fragmentation have negative effects on early progeny vigor. We conclude that negative habitat fragmentation effects on mating patterns and early progeny vigor may be a serious threat to the long-term persistence of tropical dioecious trees.


Assuntos
Genética Populacional , Árvores , Árvores/genética , Variação Genética , Ecossistema , Reprodução/genética , Repetições de Microssatélites/genética
7.
Mol Biol Rep ; 50(4): 3547-3555, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36787057

RESUMO

BACKGROUND: The genus Ternstroemia is associated with the vulnerable tropical montane cloud forest in Mexico and with other relevant vegetation types worldwide. It contains threatened and pharmacologically important species and has taxonomic issues regarding its species limits. This study describes 38 microsatellite markers generated using a genomic-based approach. METHODS AND RESULTS: We tested 23 of these markers in a natural population of Ternstroemia lineata. These markers are highly polymorphic (all loci polymorphic with 3-14 alleles per locus and expected heterozygosity between 0.202 and 0.908), most of them (19 out of 23) are in Hardy-Weinberg Equilibrium and free of null alleles (18 out of 23). Also we found no evidence of linkage among them. Finally, we tested the transferability to six other American species of Ternstroemia, two other Pentaphylacaceae species, and four species from different families within the order Ericales. CONCLUSIONS: These molecular resources are promising tools to investigate genetic diversity loss and as barcodes for ethnopharmacological applications and species delimitation in the family Pentaphylacaceae and some Ericales, among other applications.


Assuntos
Ericales , Humanos , Ericales/genética , Genoma , Genômica , Heterozigoto , Repetições de Microssatélites/genética , Alelos , Sequenciamento de Nucleotídeos em Larga Escala , Loci Gênicos/genética
8.
Appl Immunohistochem Mol Morphol ; 31(7): 485-489, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36251979

RESUMO

Crooke cell change was first found in the regressed and suppressed corticotroph (adrenocorticotropic hormone-producing) cells, and now is known to occur in pituitary tumors. The tumor cells of this type can be recognized by morphology with immunohistochemistry, and are well known to predict aggressive behavior such as invasion and rare metastases. This is one of the representative neuroendocrine tumors in the pituitary which is now considered to have malignant potential as proposed in the pancreas and gastrointestinal tracts. It is important to emphasize the pituitary tumor pathology such as Crooke cell change for prognostication and appropriate therapies. This review article describes the evolution from the Crooke cells to Crooke cell tumors which is timely along with the Fifth WHO classification 2022 published online.


Assuntos
Adenoma , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Adenoma/metabolismo , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Hormônio Adrenocorticotrópico , Tumores Neuroendócrinos/patologia , Imuno-Histoquímica
9.
Br J Neurosurg ; : 1-7, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469605

RESUMO

Most pituitary adenoma/neuroendocrine tumours (PitNET) are histologically benign and grow slowly; however, a subset of these tumours exhibit a more aggressive clinical course characterized by local invasiveness and early recurrence. These high-risk PitNETs often require multiple surgeries and radiation over several years and may eventually acquire carcinomatous characteristics, such as metastasis in some cases. Herein, we report a rare case of PitNET causing oculomotor paresis with extremely rapid recurrence only 3 months after initial surgery, followed by lethal liver metastasis. Preoperative magnetic resonance imaging and intraoperative findings were consistent with typical PitNETs, other than moderate invasion of the cavernous sinus. Pathological examination of the specimen obtained from the initial transsphenoidal surgery revealed increased mitosis and elevated rates of cells positive for Ki-67 and p53. Based on the immunohistochemical assessment for transcription factors and pituitary hormones, the diagnosis was determined to be a silent sparsely granulated corticotroph PitNET with focal malignant transformation. Aggressive features represented by Ki-67 and p53 positivity were more robust in recurrent and metastatic specimens, but hormone immunostaining was decreased. Epigenetic analysis revealed methylation of the telomerase reverse transcriptase (TERT) promoter in the tumour, resulting in TERT upregulation. Despite extensive research, markers for distinguishing extremely aggressive PitNETs have not been determined. Although further analysis is needed, our case demonstrates the possible usefulness of assessing TERT promoter methylation status in the stratification of recurrence risk in extremely high-risk variants of PitNET.

10.
Ecol Evol ; 12(9): e9271, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36110879

RESUMO

In this response, we address comments and clarify the rationale behind the choice of hypotheses aimed to describe the Quercus humboldtii phylogeography in the Colombian Andes. Finally, we explain our disagreement with the conclusions of a previous critique, since these are not necessarily adequate under the implemented population genetics approach.

11.
Acta Histochem Cytochem ; 55(6): 203-211, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688139

RESUMO

Prolactin and growth hormone can acquire anti-angiogenic properties after undergoing proteolytic cleavage by Cathepsin D and bone morphogenetic protein 1 (BMP-1) into fragments known as vasoinhibins. Little is known about the effect of vasoinhibins on angiogenesis through the involvement of key cleavage enzymes Cathepsin D and BMP-1 in pituitary neuroendocrine tumors (PitNETs, formerly pituitary adenomas). The purpose of this study was to investigate the mechanism of action of Cathepsin D and BMP-1 on angiogenesis in PitNETs compared with that of pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor-2 (FGF2). A total of 43 patients were enrolled in a retrospective analysis and 22 samples were suitable for RNA extraction, including 16 nonfunctional PitNETs and six somatotroph tumors. The mRNA and protein levels of Cathepsin D, BMP-1, VEGF, and FGF2 were compared with those of von Willebrand factor, which was assessed to determine the vascularization of PitNETs. Cathepsin D and FGF2 were significantly correlated with vascularization in PitNETs. Both Cathepsin D and FGF2 are highly involved in angiogenesis in PitNETs, although the effect of Cathepsin D as an anti-angiogenic factor is dominant over that of FGF2 as a pro-angiogenic factor.

12.
AoB Plants ; 13(6): plab066, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34858567

RESUMO

Oaks (Quercus) are a dominant woody plant genus in the northern hemisphere, which occupy a wide range of habitats and are ecologically diverse. We analysed the wood anatomical traits, the variables derived and the relative hydraulic conductivity of 21 oak species to identify their performance according to abiotic factors, leaf phenological patterns and phylogenetic restrictions by analysing the interspecific variation along an environmental gradient. First, we determine the causes of anatomical trait variation in the oaks, analysing the functional trade-offs related to distribution along the environmental gradient. We measure the phenotypic plasticity of the anatomical traits to determine the role of environment and geographic distance in the range of phenotypic plasticity. Second, we examined if oaks co-occurred along the environmental gradient. Then we analysed if wood anatomical traits reflect differences among their phylogenetic section, leaf habit and a phylogenetic section/leaf habit category. Last, we tested the phylogenetic signal. Our results showed that vessel diameter, vessel frequency, wood density and relative hydraulic conductivity are the main axes of trait variation in the species analysed among leaf habit categories. The aridity index and seasonal precipitation drive the variation in the analysed traits. Higher environmental distance resulted in a higher relative distance plasticity index among traits. Co-occurrence of oak species with different leaf habits and phylogenetic trajectories may promote complementary resource acquisition. The phylogenetic signal in the oak species studied was low, which implies labile wood traits.

13.
Am J Bot ; 108(9): 1793-1807, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34519027

RESUMO

PREMISE: The mechanisms generating the geographical distributions of genetic diversity are a central theme in evolutionary biology. The amount of genetic diversity and its distribution are controlled by several factors, including dispersal abilities, physical barriers, and environmental and climatic changes. We investigated the patterns of genetic diversity and differentiation among populations of the widespread species Brosimum alicastrum in Mexico. METHODS: Using nuclear DNA microsatellite data, we tested whether the genetic structure of B. alicastrum was associated with the roles of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec as geographical barriers to gene flow and to infer the role of past events in the genetic diversity patterns. We further used a maximum-likelihood population-effects mixed model (MLPE) to identify the main factor affecting population differentiation in B. alicastrum. RESULTS: Our results suggested that Mexican B. alicastrum is well differentiated into three main lineages. Patterns of the genetic structure at a finer scale did not fully correspond to the current geographical barriers to gene flow. According to the MLPE mixed model, isolation by distance is the best model for explaining the genetic differentiation of B. alicastrum in Mexico. CONCLUSIONS: We propose that the differentiation patterns might reflect (1) an ancient differentiation that occurred in Central and South America, (2) the effects of past climatic changes, and (3) the functions of some physical barriers to gene flow. This study provides insights into the possible mechanisms underlying the geographic genetic variation of B. alicastrum along a moisture gradient in tropical lowland forests.


Assuntos
Variação Genética , Moraceae , Fluxo Gênico , México , Repetições de Microssatélites/genética
14.
Ecol Evol ; 11(11): 6814-6828, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141258

RESUMO

The climatic and geological changes that occurred during the Quaternary, particularly the fluctuations during the glacial and interglacial periods of the Pleistocene, shaped the population demography and geographic distribution of many species. These processes have been studied in several groups of organisms in the Northern Hemisphere, but their influence on the evolution of Neotropical montane species and ecosystems remains unclear. This study contributes to the understanding of the effect of climatic fluctuations during the late Pleistocene on the evolution of Andean mountain forests. First, we describe the nuclear and plastidic DNA patterns of genetic diversity, structure, historical demography, and landscape connectivity of Quercus humboldtii, which is a typical species in northern Andean montane forests. Then, these patterns were compared with the palynological and evolutionary hypotheses postulated for montane forests of the Colombian Andes under climatic fluctuation scenarios during the Quaternary. Our results indicated that populations of Q. humboldtii have high genetic diversity and a lack of genetic structure and that they have experienced a historical increase in connectivity from the last glacial maximum (LGM) to the present. Furthermore, our results showed a dramatic reduction in the effective population size followed by an expansion before the LGM, which is consistent with the results found by palynological studies, suggesting a change in dominance in Andean forests that may be related to ecological factors rather than climate change.

15.
Zookeys ; 987: 81-114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33223886

RESUMO

Three new species of oak gall wasps of the genus Amphibolips Reinhard, 1865 (Hymenoptera: Cynipidae: Cynipini) are described from Mexico: Amphibolips magnigalla Nieves-Aldrey & Castillejos-Lemus, Amphibolips kinseyi Nieves-Aldrey & Castillejos-Lemus and Amphibolips nigrialatus Nieves-Aldrey & Castillejos-Lemus. The specimens of the first two species were representative of sexual generations and come from the State of Oaxaca, while only a female, collected in the State of Veracruz, is described for A. nigrialatus. The new species induces galls on Quercus zempoaltepecana and Q. sapotifolia (Fagaceae, section Lobatae, red oaks). Descriptions of the diagnostic morphological characteristics of the three species and a key for their identification are provided. The taxonomic relationships of the new species with other species of Amphibolips are discussed; the three new species are closely allied amongst themselves and are related to A. dampfi Kinsey, 1937. With the three newly-described species, the number of Amphibolips in Mexico is increased to 23.

16.
Ecol Evol ; 10(10): 4204-4219, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32489590

RESUMO

The Mexican highlands are areas of high biological complexity where taxa of Nearctic and Neotropical origin and different population histories are found. To gain a more detailed view of the evolution of the biota in these regions, it is necessary to evaluate the effects of historical tectonic and climate events on species. Here, we analyzed the phylogeographic structure, historical demographic processes, and the contemporary period, Last Glacial Maximum (LGM) and Last Interglacial (LIG) ecological niche models of Quercus castanea, to infer the historical population dynamics of this oak distributed in the Mexican highlands. A total of 36 populations of Q. castanea were genotyped with seven chloroplast microsatellite loci in four recognized biogeographic provinces of Mexico: the Sierra Madre Occidental (western mountain range), the Central Plateau, the Trans-Mexican Volcanic Belt (TMVB, mountain range crossing central Mexico from west to east) and the Sierra Madre del Sur (SMS, southern mountain range). We obtained standard statistics of genetic diversity and structure and tested for signals of historical demographic expansions. A total of 90 haplotypes were identified, and 29 of these haplotypes were restricted to single populations. The within-population genetic diversity was high (mean h S = 0.72), and among-population genetic differentiation showed a strong phylogeographic structure (N ST = 0.630 > G ST = 0.266; p < .001). Signals of demographic expansion were identified in the TMVB and the SMS. The ecological niche models suggested a considerable percentage of stable distribution area for the species during the LGM and connectivity between the TMVB and the SMS. High genetic diversity, strong phylogeographic structure, and ecological niche models suggest in situ permanence of Q. castanea populations with large effective population sizes. The complex geological and climatic histories of the TMVB help to explain the origin and maintenance of a large proportion of the genetic diversity in this oak species.

17.
PeerJ ; 8: e8307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31942256

RESUMO

Variation in leaf morphology is correlated with environmental variables, such as precipitation, temperature and soil composition. Several studies have pointed out that individual plasticity can largely explain the foliar phenotypic differences observed in populations due to climatic change and have suggested that the environment plays an important role in the evolution of plant species by selecting for phenotypic variation. Thus, the study of foliar morphology in plant populations can help us identify the environmental factors that have potentially influenced the process of species diversification. In this study, we analyzed morphological variation in the leaf traits of the Ternstroemia lineata species complex (Penthaphylacaceae) and its relation to climatic variables across the species distribution area to identify the patterns of morphological differentiation within this species complex. Based on the collected leaves of 270 individuals from 32 populations, we analyzed nine foliar traits using spatial interpolation models and multivariate statistics. A principal component analysis identified three main morphological traits (leaf length and two leaf shape variables) that were used to generate interpolated surface maps to detect discrete areas delimited by zones of rapid change in the values of the morphological traits. We identified a mosaic coarse-grain pattern of geographical distribution in the variation of foliar traits. According to the interpolation maps, we could define nine morphological groups and their geographic distributions. Longer leaves, spatulate leaves and the largest foliar area were located in sites with lower precipitation and higher seasonality of precipitation following a northwest-southeast direction and following significant latitudinal and longitudinal gradients. According to the phenogram of the relationships of the nine morphological groups based on morphological similarity, the putative species and subspecies of the T. lineata species complex did not show a clear pattern of differentiation. In this study, we found a complex pattern of differentiation with some isolated populations and some other contiguous populations differentiated by different traits. Further genetic and systematic studies are needed to clarify the evolutionary relationships in this species complex.

18.
Am J Bot ; 106(7): 1021-1031, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31299090

RESUMO

PREMISE: Closely related species occurring in sympatry may experience the negative consequences of interspecific pollen transfer if reproductive isolation (RI) barriers are not in place. We evaluated the importance of pre- and post-pollination RI barriers in three sympatric species of Achimenes (Gesneriaceae), including ecogeographic, phenological, floral isolation, self-pollination, and hybrid viability (fruit and seed set). METHODS: We recorded geographic distribution throughout species ranges and assessed flowering phenology and pollinator visitation at one site in central Mexico. In the greenhouse, we measured floral traits involved in RI and quantified fruit and seed set for from self, intraspecific, and interspecific crosses. RESULTS: Ecogeographic barriers were important in RI, but under sympatry, phenological and floral barriers contributed more to total RI. Phenological RI varied between species and years, while floral RI was 100% effective at preventing interspecific visitation. Species showed differences in floral morphology, color, and scents associated with specialized pollination systems (A. antirrhina-hummingbirds, A. flava-bees, A. patens-butterflies); heterospecific visitation events were restricted to rare secondary pollinators. Hybrid crosses consistently yielded progeny in lower numbers than intraspecific crosses. CONCLUSIONS: This study indicated that neither autogamy nor early post-pollination barriers prevent interspecific pollen flow between Achimenes species. However, floral isolation, acting through a combination of attraction and reward traits, consistently ensures specificity of the pollination system. These results suggest that selection on floral traits to reduce the costs of hybrid progeny production may have played a role in evolution or maintenance of specialized pollination systems in Achimenes.


Assuntos
Flores/fisiologia , Lamiales , Polinização , Isolamento Reprodutivo , Simpatria , Animais , Abelhas , Aves , Borboletas , Hibridização Genética , Odorantes , Néctar de Plantas/metabolismo , Autofertilização , Açúcares/metabolismo , Compostos Orgânicos Voláteis/metabolismo
19.
Ecology ; 100(10): e02803, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31240696

RESUMO

Network analysis is a powerful tool to understand community-level plant-pollinator interactions. We evaluated the role of floral visitors on plant fitness through a series of pollination exclusion experiments to test the effectiveness of pollinators of an Ipomoea community in the Pacific coast of Mexico, including: (1) all flower visitors, (2) visitors that contact the reproductive organs, (3) visitors that deposit pollen on stigmas, and (4) visitors that mediate fruit and seed production. Our results show that networks built from effective pollination interactions are smaller, less connected, more specialized and modular than floral visitor networks. Modules are associated with pollinator functional groups and they provide strong support for pollination syndromes only when non-effective interactions are excluded. In contrast to other studies, the analyzed networks are not nested. Our results also show that only 59% of floral visitors were legitimate pollinators that contribute to seed production. Furthermore, only 27% of the links in visitation network resulted in seed production. Our study shows that plant-pollination networks that consider effectiveness measures of pollination in addition to floral visitation provide insightful information about the different role floral visitors play in a community, encompassing a large number of commensalistic/antagonistic interactions and the more restricted set of mutualistic relationships that underlie the evolution of convergent floral phenotypes in plants.


Assuntos
Flores , Polinização , México , Plantas , Pólen
20.
Parasitology ; 146(1): 74-88, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29781413

RESUMO

The anthropogenic modification of natural landscapes, and the consequent changes in the environmental conditions and resources availability at multiple spatial scales can affect complex species interactions involving key-stone species such as bat-parasite interactions. In this study, we aimed to identify the drivers potentially influencing host-bat fly interactions at different spatial scales (at the host, vegetation stand and landscape level), in a tropical anthropogenic landscape. For this purpose, we mist-netted phyllostomid and moormopid bats and collected the bat flies (streblids) parasitizing them in 10 sites representing secondary and old growth forest. In general, the variation in fly communities largely mirrored the variation in bat communities as a result of the high level of specialization characterizing host-bat fly interaction networks. Nevertheless, we observed that: (1) bats roosting dynamics can shape bat-streblid interactions, modulating parasite prevalence and the intensity of infestation; (2) a degraded matrix could favor crowding and consequently the exchange of ectoparasites among bat species, lessening the level of specialization of the interaction networks and promoting novel interactions; and (3) bat-fly interaction can also be shaped by the dilution effect, as a decrease in bat diversity could be associated with a potential increase in the dissemination and prevalence of streblids.


Assuntos
Quirópteros/parasitologia , Dípteros/fisiologia , Animais , Ecossistema , Florestas , Interações Hospedeiro-Parasita , Atividades Humanas/tendências , México , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA