Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
Mucosal Immunol ; 14(3): 691-702, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674761

RESUMO

Plectin, a highly versatile cytolinker protein, provides tissues with mechanical stability through the integration of intermediate filaments (IFs) with cell junctions. Here, we hypothesize that plectin-controlled cytoarchitecture is a critical determinant of the intestinal barrier function and homeostasis. Mice lacking plectin in an intestinal epithelial cell (IEC; PleΔIEC) spontaneously developed colitis characterized by extensive detachment of IECs from the basement membrane (BM), increased intestinal permeability, and inflammatory lesions. Moreover, plectin expression was reduced in the colons of ulcerative colitis (UC) patients and negatively correlated with the severity of colitis. Mechanistically, plectin deficiency in IECs led to aberrant keratin filament (KF) network organization and the formation of dysfunctional hemidesmosomes (HDs) and intercellular junctions. In addition, the hemidesmosomal α6ß4 integrin (Itg) receptor showed attenuated association with KFs, and protein profiling revealed prominent downregulation of junctional constituents. Consistent with the effects of plectin loss in the intestinal epithelium, plectin-deficient IECs exhibited remarkably reduced mechanical stability and limited adhesion capacity in vitro. Feeding mice with a low-residue liquid diet that reduced mechanical stress and antibiotic treatment successfully mitigated epithelial damage in the PleΔIEC colon.


Assuntos
Colite Ulcerativa/metabolismo , Colite/metabolismo , Colo/patologia , Mucosa Intestinal/metabolismo , Plectina/metabolismo , Adulto , Idoso , Animais , Colite/prevenção & controle , Colite Ulcerativa/prevenção & controle , Desmossomos/genética , Desmossomos/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Mucosa Intestinal/patologia , Queratinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Plectina/genética , Adulto Jovem
4.
J Hepatol ; 68(5): 1006-1017, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29273475

RESUMO

BACKGROUND & AIMS: Plectin, a highly versatile cytolinker protein, controls intermediate filament cytoarchitecture and cellular stress response. In the present study, we investigate the role of plectin in the liver under basal conditions and in experimental cholestasis. METHODS: We generated liver-specific plectin knockout (PleΔalb) mice and analyzed them using two cholestatic liver injury models: bile duct ligation (BDL) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding. Primary hepatocytes and a cholangiocyte cell line were used to address the impact of plectin on keratin filament organization and stability in vitro. RESULTS: Plectin deficiency in hepatocytes and biliary epithelial cells led to aberrant keratin filament network organization, biliary tree malformations, and collapse of bile ducts and ductules. Further, plectin ablation significantly aggravated biliary damage upon cholestatic challenge. Coincidently, we observed a significant expansion of A6-positive progenitor cells in PleΔalb livers. After BDL, plectin-deficient bile ducts were prominently dilated with more frequent ruptures corresponding to an increased number of bile infarcts. In addition, more abundant keratin aggregates indicated less stable keratin filaments in PleΔalb hepatocytes. A transmission electron microscopy analysis revealed a compromised tight junction formation in plectin-deficient biliary epithelial cells. In addition, protein profiling showed increased expression of the adherens junction protein E-Cadherin, and inefficient upregulation of the desmosomal protein desmoplakin in response to BDL. In vitro analyses revealed a higher susceptibility of plectin-deficient keratin networks to stress-induced collapse, paralleled by elevated activation of p38 MAP kinase. CONCLUSION: Our study shows that by maintaining proper keratin network cytoarchitecture and biliary epithelial stability, plectin plays a critical role in protecting the liver from stress elicited by cholestasis. LAY SUMMARY: Plectin is a cytolinker protein capable of interconnecting all three cytoskeletal filament systems and linking them to plasma membrane-bound junctional complexes. In liver, the plectin-controlled cytoskeleton mechanically stabilizes epithelial cells and provides them with the capacity to adapt to increased bile pressure under cholestasis.


Assuntos
Sistema Biliar/metabolismo , Sistema Biliar/patologia , Colestase/metabolismo , Colestase/patologia , Plectina/metabolismo , Animais , Sistema Biliar/anormalidades , Epitélio/metabolismo , Epitélio/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Queratinas/metabolismo , Fígado/anormalidades , Fígado/metabolismo , Fígado/patologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Plectina/deficiência , Plectina/genética , Estabilidade Proteica , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Macromol Biosci ; 15(9): 1233-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25974890

RESUMO

N-Acetyl-l-cysteine (NAC)-capped poly(methyl methacrylate)-b-polycaprolactone block copolymer (PMMA-b-PCL-NAC) was prepared using the previously described one-pot photoinduced sequential CuAAC/thiol-ene double click procedure. PMMA-b-PCL-NAC had previously shown good applicability as a matrix for cell adhesion of cells from the Vero cell line (African green monkey kidney epithelial). Here, in this work, PMMA-b-PCL-NAC served as an excellent immobilization matrix for biomolecule conjugation. Covalent binding of RGD (R: arginine, G: glycine, and D: aspartic acid) peptide sequence onto the PMMA-b-PCL-NAC-coated surface was performed via EDC chemistry. RGD-modified PMMA-b-PCL-NAC (PMMA-b-PCL-NAC-RGD) as a non-toxic cell proliferation platform was used for selective "integrin αvß3-mediated cell adhesion and biosensing studies. Both optical and electrochemical techniques were used to monitor the adhesion differences between "integrin αvß3" receptor positive and negative cell lines on to the designed biofunctional surfaces.


Assuntos
Técnicas Biossensoriais , Adesão Celular , Metilmetacrilatos/química , Oligopeptídeos/metabolismo , Poliésteres/química , Alicerces Teciduais , Animais , Linhagem Celular Tumoral , Química Click , Humanos , Queratinócitos/fisiologia , Ligação Proteica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA