Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13520, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941181

RESUMO

SMIFH2 is a small molecule inhibitor of the formin family of cytoskeletal regulators that was originally identified in a screen for suppression of actin polymerization induced by the mouse formin Diaphanous 1 (mDia1). Despite widespread use of this compound, it is unknown whether SMIFH2 inhibits all human formins. Additionally, the nature of protein/inhibitor interactions remains elusive. We assayed SMIFH2 against human formins representing six of the seven mammalian classes and found inhibitory activity against all formins tested. We synthesized a panel of SMIFH2 derivatives and found that, while many alterations disrupt SMIFH2 activity, substitution of an electron-donating methoxy group in place of the bromine along with halogenation of the furan ring increases potency by approximately five-fold. Similar to SMIFH2, the active derivatives are also pan-inhibitors for the formins tested. This result suggests that while potency can be improved, the goal of distinguishing between highly conserved FH2 domains may not be achievable using the SMIFH2 scaffold.


Assuntos
Actinas , Proteínas de Transporte , Tionas/farmacologia , Uracila/análogos & derivados , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Proteínas de Transporte/metabolismo , Citoesqueleto/metabolismo , Forminas , Humanos , Mamíferos/metabolismo , Camundongos , Estrutura Terciária de Proteína , Uracila/farmacologia
2.
Chem Sci ; 13(16): 4581-4588, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35656134

RESUMO

One of the many functions of reduction-oxidation (redox) cofactors is to mediate electron transfer in biological enzymes catalyzing redox-based chemical transformation reactions. There are numerous examples of enzymes that utilize redox cofactors to form electron transfer relays to connect catalytic sites to external electron donors and acceptors. The compositions of relays are diverse and tune transfer thermodynamics and kinetics towards the chemical reactivity of the enzyme. Diversity in relay design is exemplified among different members of hydrogenases, enzymes which catalyze reversible H2 activation, which also couple to diverse types of donor and acceptor molecules. The [FeFe]-hydrogenase I from Clostridium acetobutylicum (CaI) is a member of a large family of structurally related enzymes where interfacial electron transfer is mediated by a terminal, non-canonical, His-coordinated, [4Fe-4S] cluster. The function of His coordination was examined by comparing the biophysical properties and reactivity to a Cys substituted variant of CaI. This demonstrated that His coordination strongly affected the distal [4Fe-4S] cluster spin state, spin pairing, and spatial orientations of molecular orbitals, with a minor effect on reduction potential. The deviations in these properties by substituting His for Cys in CaI, correlated with pronounced changes in electron transfer and reactivity with the native electron donor-acceptor ferredoxin. The results demonstrate that differential coordination of the surface localized [4Fe-4S]His cluster in CaI is utilized to control intermolecular and intramolecular electron transfer where His coordination creates a physical and electronic environment that enables facile electron exchange between electron carrier molecules and the iron-sulfur cluster relay for coupling to reversible H2 activation at the catalytic site.

3.
ACS Appl Mater Interfaces ; 13(10): 11793-11804, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33660991

RESUMO

Au nanoparticles (NP) on TiO2 have been shown to be effective catalysts for selective oxidation reactions by using molecular oxygen. In this work, we have studied the influence of support morphology on the catalytic activity of Au/TiO2 catalysts. Two TiO2 anatase supports, a nanoplatelet-shaped material with predominantly the {001} facet exposed and a truncated bipyramidal-shaped nanoparticle with predominantly the {101} facet exposed, were prepared by using a nonaqueous solvothermal method and characterized by using DRIFTS, XPS, and TEM. Au nanoparticles were deposited on the supports by using the deposition-precipitation method, and particle sizes were determined by using STEM. Au nanoparticles were smaller on the support with the majority of the {101} facet exposed. The resulting materials were used to catalyze the aerobic oxidation of benzyl alcohol and trifluoromethylbenzyl alcohol. Support morphology impacts the catalytic activity of Au/TiO2; reaction rates for reactions catalyzed by the predominantly {101} material were higher. Much of the increased reactivity can be explained by the presence of smaller Au particles on the predominantly {101} material, providing more Au/TiO2 interface area, which is where catalysis occurs. The remaining modest differences between the two catalysts are likely due to geometric effects as Hammett slopes show no evidence for electronic differences between the Au particles on the different materials.

4.
Chem Sci ; 10(26): 6539-6552, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31367306

RESUMO

We report a method to control the composition and microstructure of CdSe1-x S x nanocrystals by the simultaneous injection of sulfide and selenide precursors into a solution of cadmium oleate and oleic acid at 240 °C. Pairs of substituted thio- and selenoureas were selected from a library of compounds with conversion reaction reactivity exponents (k E) spanning 1.3 × 10-5 s-1 to 2.0 × 10-1 s-1. Depending on the relative reactivity (k Se/k S), core/shell and alloyed architectures were obtained. Growth of a thick outer CdS shell using a syringe pump method provides gram quantities of brightly photoluminescent quantum dots (PLQY = 67 to 90%) in a single reaction vessel. Kinetics simulations predict that relative precursor reactivity ratios of less than 10 result in alloyed compositions, while larger reactivity differences lead to abrupt interfaces. CdSe1-x S x alloys (k Se/k S = 2.4) display two longitudinal optical phonon modes with composition dependent frequencies characteristic of the alloy microstructure. When one precursor is more reactive than the other, its conversion reactivity and mole fraction control the number of nuclei, the final nanocrystal size at full conversion, and the elemental composition. The utility of controlled reactivity for adjusting alloy microstructure is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA