Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomed Res ; 44(1): 1-7, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36682796

RESUMO

G protein-coupled receptor class C group 5 member B (GPRC5B) is involved in extracellular glucose sensing, glucose metabolism, and insulin resistance. Many cancers require glucose at high concentrations to survive and grow. We have investigated the association between tumour GPRC5B expression and the prognosis for patients with cancer, including head-and-neck squamous cell carcinoma (HNSCC), using data from The Human Protein Atlas. The 5-year survival rate was significantly reduced in patients with HNSCC, gastric, pancreatic, colorectal, and breast cancers if their tumours exhibited high levels of GPRC5B expression. The role of GPRC5B in glucose metabolism was assessed using six HNSCC cell lines with varying levels of GPRC5B expression. High levels of GPRC5B expression were found to favour rapid cell growth. The viability of an HNSCC cell line with normal and transfected GPRC5B expression was also assessed and no differences were observed under standard culture conditions. However, under glucose-deficient culture conditions, GPRC5B-overexpressing cells exhibited increased viability and reduced apoptosis. The results highlight the association between high GPRC5B expression and poor 5-year survival rates in patients with various cancers, including HNSCC. Furthermore, we have demonstrated that GPRC5B supports cancer cell survival under glucose-depleted conditions and could be a target molecule for cancer therapy.


Assuntos
Glucose , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Glucose/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Apoptose/genética , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 20(8)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31014014

RESUMO

Cancer is a leading cause of death and disease worldwide, with a tremendous financial impact. Thus, the development of cost-effective novel approaches for suppressing tumor growth and progression is essential. In an attempt to identify the mechanisms responsible for tumor suppression, we screened for molecules downregulated in a cancer progression model and found that the chemokine CXCL14, also called BRAK, was the most significantly downregulated. Increasing the production of CXCL14 protein by transfecting tumor cells with a CXCL14 expression vector and transplanting the cells into the back skin of immunodeficient mice suppressed tumor cell growth compared with that of parental tumor cells, suggesting that CXCL14 suppressed tumor growth in vivo. However, some studies have reported that over-expression of CXCL14, especially in stromal cells, stimulated the progression of tumor formation. Transgenic mice expressing 10-fold more CXCL14 protein than wild-type C57BL/6 mice showed reduced rates of chemical carcinogenesis, transplanted tumor growth, and metastasis without apparent side effects. CXCL14 also acts as an antimicrobial molecule. In this review, we highlight recent studies involving the identification and characterization of CXCL14 in cancer progression and discuss the reasons for the context-dependent effects of CXCL14 on tumor formation.


Assuntos
Quimiocinas CXC/metabolismo , Neoplasias/patologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Candida/efeitos dos fármacos , Cetuximab/uso terapêutico , Quimiocinas CXC/genética , Quimiocinas CXC/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
3.
Oncotarget ; 8(45): 78312-78326, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-29108231

RESUMO

Extracellular acidity is a hallmark of solid tumors and is associated with metastasis in the tumor microenvironment. Acidic extracellular pH (pH e ) has been found to increase intracellular Ca2+ and matrix metalloproteinase-9 (MMP-9) expression by activating NF-κB in the mouse B16 melanoma model. The present study assessed whether TRPM5, an intracellular Ca2+-dependent monovalent cation channel, is associated with acidic pH e signaling and induction of MMP-9 expression in this mouse melanoma model. Treatment of B16 cells with Trpm5 siRNA reduced acidic pH e -induced MMP-9 expression. Enforced expression of Trpm5 increased the rate of acidic pH e -induced MMP-9 expression, as well as increasing experimental lung metastasis. This genetic manipulation did not alter the pH e critical for MMP-9 induction but simply amplified the percentage of inducible MMP-9 at each pH e . Treatment of tumor bearing mice with triphenylphosphine oxide (TPPO), an inhibitor of TRPM5, significantly reduced spontaneous lung metastasis. In silico analysis of clinical samples showed that high TRPM5 mRNA expression correlated with poor overall survival rate in patients with melanoma and gastric cancer but not in patients with cancers of the ovary, lung, breast, and rectum. These results showed that TRPM5 amplifies acidic pH e signaling and may be a promising target for preventing metastasis of some types of tumor.

5.
Biomed Res ; 35(6): 381-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25743344

RESUMO

CXCL14/BRAK (BRAK) is a secreted chemokine with anti-tumor activity, and its expression is suppressed in tumor cells. We previously reported the anti-tumor activity of BRAK in cell lines of head and neck squamous cell carcinoma (HNSCC) and the suppression of BRAK secretion in these cells. BRAK secretion in fibrosarcoma cells is restored by Fasudil, which is a Rho-kinase (ROCK) inhibitor. In this study, we examined the anti-tumor effect of BRAK by evaluating its gene expression and protein secretion in HNSCC cell lines. We found that BRAK mediated the suppressive effect of Fasudil against HNSCC cells. Tumor development in female BALB/cAJclnu/nu mice was suppressed by Fasudil. Also secretion of BRAK protein by tumor cell lines in vitro was significantly stimulated by Fasudil treatment. Similarly, the production of BRAK protein was significantly increased by the addition of Fasudil to cultured tumor cells. Furthermore Fasudil significantly increased BRAK gene expression at the mRNA level in HNSCC cell line. Inhibition of the RhoA/ROCK pathway by siRNAs significantly stimulated BRAK gene expression. These results show that the tumor-suppressive effect of Fasudil was mediated by BRAK, suggesting that Fasudil may therefore be useful for the treatment of HNSCC.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Carcinoma de Células Escamosas/patologia , Quimiocinas CXC/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias de Cabeça e Pescoço/patologia , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Carcinoma de Células Escamosas de Cabeça e Pescoço
6.
Cancer Cell Int ; 13(1): 89, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24004445

RESUMO

Acidic extracellular pH is a major feature of tumor tissue, extracellular acidification being primarily considered to be due to lactate secretion from anaerobic glycolysis. Clinicopathological evidence shows that transporters and pumps contribute to H+ secretion, such as the Na+/H+ exchanger, the H+-lactate co-transporter, monocarboxylate transporters, and the proton pump (H+-ATPase); these may also be associated with tumor metastasis. An acidic extracellular pH not only activates secreted lysosomal enzymes that have an optimal pH in the acidic range, but induces the expression of certain genes of pro-metastatic factors through an intracellular signaling cascade that is different from hypoxia. In addition to lactate, CO2 from the pentose phosphate pathway is an alternative source of acidity, showing that hypoxia and extracellular acidity are, while being independent from each other, deeply associated with the cellular microenvironment. In this article, the importance of an acidic extracellular pH as a microenvironmental factor participating in tumor progression is reviewed.

7.
J Pharmacol Sci ; 120(3): 241-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23099322

RESUMO

We previously reported that chemokine CXCL14/BRAK (BRAK) has antitumor activity in several carcinoma cells indicating that BRAK secretion suppresses carcinoma cells. Ras-homologous small GTPase (RhoA) and Rho-associated coiled-coil-containing protein kinase (ROCK) are important regulators of secretory processes, and activation of the RhoA/ROCK signaling pathway stimulates tumor invasion and metastasis. We investigated the effects of fasudil, a specific ROCK inhibitor, on BRAK secretion and tumor progression in mesenchymal fibrosarcoma cells (MC57). We demonstrated the antitumor activity of secreted BRAK using MC57 transplantation of BRAK in overexpressed transgenic mice. Further, to eliminate the influence of change in the mRNA expression of endogenous BRAK, we produced stable MC57 cell lines expressing BRAK (MC57-BRAK) or mock vector (MC57-MOCK). Fasudil significantly increased BRAK secretion by MC57-BRAK cells in a dose-dependent manner. To determine the effect of fasudil on tumor growth, MC57-BRAK and MC57-MOCK cells were transplanted into wild-type mice. Fasudil treatment suppressed tumor growth only in mice that had received MC57-BRAK cell transplants. These results indicate that fasudil inhibits fibrosarcoma growth by stimulating BRAK secretion and suggests that fasudil therapy might have clinical efficacy.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Antineoplásicos/uso terapêutico , Quimiocinas CXC/metabolismo , Fibrossarcoma/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiocinas CXC/genética , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Biochem Biophys Res Commun ; 420(2): 217-22, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22382027

RESUMO

The chemokine BRAK/CXCL14 (BRAK) is expressed in normal squamous epithelium, but is not expressed or is expressed at negligible levels in head and neck squamous cell carcinoma. Malignant cells are known to be dedifferentiated compared with normal epithelial cells, suggesting a role for differentiation cues in the expression of BRAK. Thus, we examined the relationship between BRAK expression and stages of differentiation level in epithelial cells. Immunohistochemical analysis showed that BRAK protein was expressed in cells above the spinous cell layer in normal epithelia. In HSC-3 cells in culture, expression of BRAK mRNA was significantly upregulated by cell contact in a cell density-dependent manner, and mRNA expression of cell differentiation markers such as involucrin, cystatin-A, TGM1, TGM3, and TGM5 was concomitantly augmented. Furthermore, the upregulation of BRAK induced by cell contact was suppressed by chlorpromazine, a specific inhibitor of calmodulin. We previously reported that GC boxes and a TATA-like sequence in the BRAK promoter region are associated with the expression of BRAK. Using a promoter assay and ChIP, we demonstrated that binding of the stimulating protein-1 (SP1) transcription factor to a GC box upstream of the BRAK transcription start site was necessary for cell density-dependent upregulation of BRAK. These results indicated that upregulation of BRAK was accompanied by differentiation of epithelial cells induced by calcium/calmodulin signaling, and that SP1 binding to the BRAK promoter region played an important role in this signaling.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Diferenciação Celular/genética , Quimiocinas CXC/genética , Células Epiteliais/citologia , Regulação da Expressão Gênica , Fator de Transcrição Sp1/metabolismo , Calmodulina/antagonistas & inibidores , Comunicação Celular/genética , Contagem de Células , Clorpromazina/farmacologia , Cistatina A/metabolismo , Células Epiteliais/metabolismo , Humanos , Regiões Promotoras Genéticas , Transdução de Sinais , Transglutaminases/metabolismo , Células Tumorais Cultivadas , Regulação para Cima
9.
Free Radic Res ; 44(8): 913-24, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20815772

RESUMO

The present study investigated the effects of oxidative stress induced by reactive oxygen species (ROS), such as hydrogen peroxide (H(2)O(2)) and hydroxyl radical (HO(*)), on the expression of both BRAK , which is also known as non-ELR motif angiostatic CXC chemokine ligand 14 (CXCL14), in head and neck squamous cell carcinoma (HNSCC) cells. When HNSCC cells were cultured in the presence of ROS, the expression of BRAK was significantly decreased whereas that of IL-8 was increased. Interestingly, the effects on the expression of both genes in HNSCC cells were much greater with HO(blacksquare, square, filled) than with H(2)O(2). The effects of ROS on both BRAK and IL-8 expression were attenuated by pre-treatment with N-acetyl-L-cysteine (NAC), epidermal growth factor receptor (EGFR), and mitogen-activated protein kinase (MAPK) inhibitors. These results indicate that oxidative stress induced by H(2)O(2) or HO(*) stimulates angiogenesis and tumuor progression by altering the gene expression of BRAK and IL-8 via the EGFR/MEK/ERK pathway in human HNSCC cells.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Quimiocinas CXC/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Sobrevivência Celular/efeitos dos fármacos , Quimiocinas CXC/metabolismo , Compostos Ferrosos/farmacologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Radical Hidroxila/análise , Radical Hidroxila/metabolismo , Interleucina-8/biossíntese , Estresse Oxidativo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Células Tumorais Cultivadas
10.
Biomed Res ; 31(3): 199-206, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20622470

RESUMO

We reported previously that the forced expression of the chemokine BRAK/CXCL14 in head and neck squamous cell carcinoma cells decreased the rate of tumor formation and size of tumor xenografts in athymic nude mice and SCID mice. In order to clarify the expression of BRAK/CXCL14 affected either the settlement of carcinoma cells in host tissues in vivo or proliferation of the colonized carcinoma cells or both, we prepared oral floor carcinoma-derived HSC-2 cells in which BRAK/CXCL14 expression was induced upon doxycycline treatment. Then 30 nude mice were separated into 3 groups composed of 10 mice per group: Group I, the control, in which the engineered cells were directly xenografted onto the back of the mice; Group II, the cells were xenografted and then the mice were treated with doxycycline; and Group III, the cells were pretreated with doxycycline during culture, and the host mice were also treated with the drug before and after xenografting. The effects of BRAK/CXCL14 expression were examined by measuring the tumor size. The order of the size of tumor xenografts was Group I > II > III, even though the growth rate of the engineered cells was the same whether or not the cells were cultured in the presence of the drug. In addition, the size of tumors was significantly down-regulated after xenografting the doxycycline-pretreated cells in Group III. These data indicate that BRAK/CXCL14 expression in oral floor carcinoma cells reduced both the rate of settlement and the proliferation of the cells in vivo after settlement of the cells.


Assuntos
Proliferação de Células , Quimiocinas CXC/metabolismo , Neoplasias Bucais/metabolismo , Animais , Quimiocinas CXC/genética , Eletroforese em Gel de Poliacrilamida , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Camundongos SCID , Neoplasias Bucais/patologia , Transplante Heterólogo
11.
Biochem Biophys Res Commun ; 396(4): 1060-4, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20478268

RESUMO

The mitogen-activated protein kinase (MAPK) family comprises ERK, JNK, p38 and ERK5 (big-MAPK, BMK1). UV irradiation of squamous cell carcinoma cells induced up-regulation of gene expression of chemokine BRAK/CXCL14, stimulated p38 phosphorylation, and down-regulated the phosphorylation of ERK. Human p38 MAPKs exist in 4 isoforms: p38 alpha, beta, gamma and delta. The UV stimulation of p38 phosphorylation was not inhibited by the presence of SB203580 or PD169316, inhibitors of p38 alpha and beta, suggesting p38 phosphorylation was not dependent on these 2 isoforms and that p38 gamma and/or delta was responsible for the phosphorylation. In fact, inhibition of each of these 4 p38 isoforms by the introduction of short hairpin (sh) RNAs for respective isoforms revealed that only shRNA for p38 delta attenuated the UV-induced up-regulation of BRAK/CXCL14 gene expression. In addition, over-expression of p38 isoforms in the cells showed the association of p38 delta with ERK1 and 2, concomitant with down-regulation of ERK phosphorylation. The usage of p38 delta isoform by UV irradiation is not merely due to the abundance of this p38 isoform in the cells. Because serum deprivation of the cells also induced an increase in BRAK/CXCL14 gene expression, and in this case p38 alpha and/or beta isoform is responsible for up-regulation of BRAK/CXCL14 gene expression. Taken together, the data indicate that the respective stress-dependent action of p38 isoforms is responsible for the up-regulation of the gene expression of the chemokine BRAK/CXCL14.


Assuntos
Quimiocinas CXC/genética , Regulação da Expressão Gênica , Expressão Gênica/efeitos da radiação , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Raios Ultravioleta , Linhagem Celular Tumoral , Humanos , Proteína Quinase 13 Ativada por Mitógeno/genética , Regulação para Cima
12.
Biomed Res ; 31(2): 123-31, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20460740

RESUMO

BRAK/CXCL14 is a chemokine that is expressed in many normal cells and tissues but is absent from or expressed at very low levels in transformed cells and cancerous tissues including head and neck squamous cell carcinoma (HNSCC). We reported previously that the forced expression of BRAK/CXCL14 in HNSCC cells decreased the rate of tumor formation and size of tumor xenografts in athymic nude mice and SCID mice, suggesting that expression level of the gene is important for tumor suppression. In order to study the regulatory mechanisms governing the expression of this gene, we determined the transcriptional start site and promoter motifs of the gene. The major transcriptional start site determined by 5'rapid amplification of cDNA end method was located 283 bp downstream of the first proposed site of the gene. Determination of luciferase activities of reporter gene constructs with various deletions or mutations showed that an atypical TATA-like sequence, TATTAA was essential for the transcription of the gene and that the AP-1 binding sequence and tandem GC box were necessary for stimulating the expression of the gene in human squamous epithelial cells. The human DNA region was highly homologous (95% base identity) to the mouse gene. In addition, okadaic acid, an inhibitor of serine/threonine phosphatases 1, 2A and 2B, stimulated TATTAA sequence and AP-1 binding-sequence dependent promoter activity as well as increased the level of BRAK/CXCL14 mRNA, indicating that these sequences are essential for the regulation of BRAK/CXCL14 gene expression in the cells.


Assuntos
Quimiocinas CXC/genética , Quimiocinas/genética , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Carcinoma de Células Escamosas/genética , DNA Complementar/genética , Genes Reporter , Humanos , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Neoplasias/genética , RNA Mensageiro/genética , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
13.
Transgenic Res ; 19(6): 1109-17, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20333465

RESUMO

We reported previously that the forced expression of the chemokine BRAK, also called CXCL14 in head and neck squamous cell carcinoma (HNSCC) cells decreased the rate of tumor formation and size of tumor xenografts compared with mock-vector treated cells in athymic nude mice or in severe combined immunodeficiency mice. This suppression occurred even though the growth rates of these cells were the same under in vitro culture conditions, suggesting that a high expression level of the gene in tumor cells is important for the suppression of tumor establishment in vivo. The aim of this study was to determine whether CXCL14/BRAK transgenic mice show resistance to tumor cell xenografts or not. CXCL14/BRAK cDNA was introduced into male C57BL/6 J pronuclei, and 10 founder transgenic mice (Tg) were obtained. Two lines of mice expressed over 10 times higher CXCL14/BRAK protein levels (14 and 11 ng/ml plasma, respectively) than normal blood level (0.9 ng/ml plasma), without apparent abnormality. The sizes of Lewis lung carcinoma and B16 melanoma cell xenografts in Tg mice were significantly smaller than those in control wild-type mice, indicating that CXCL14/BRAK, first found as a suppressor of tumor progression of HNSCC, also suppresses the progression of a carcinoma of other tissue origin. Immunohistochemical studies showed that invasion of blood vessels into tumors was suppressed in tumor xenografts of CXCL14/BRAK Tg mice. These results indicate that CXCL14/BRAK suppressed tumor cell xenografts by functioning paracrine or endocrine fashion and that CXCL14/BRAK is a very promising molecular target for tumor suppression without side effects.


Assuntos
Quimiocinas CXC/genética , Quimiocinas CXC/imunologia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Animais , Sequência de Bases , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/terapia , Linhagem Celular Tumoral , Primers do DNA/genética , Feminino , Expressão Gênica , Humanos , Rim/imunologia , Masculino , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transplante de Neoplasias , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/genética , RNA Mensageiro/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Transplante Heterólogo
14.
Cell Biol Int ; 34(5): 513-22, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20067447

RESUMO

BRAK/CXCL14 (breast- and kidney-expressed chemokine/CXC chemokine ligand 14) is a chemokine that is expressed in many normal cells and tissues but is absent from or expressed at very low levels in transformed cells and cancerous tissues, including HNSCC (head and neck squamous cell carcinoma). We reported previously that the forced expression of BRAK/CXCL14 in HNSCC (HSC-3 BRAK) cells decreased the rate of tumour formation and size of tumour xenografts compared with mock-vector-introduced (HSC-3 Mock) cells in athymic nude mice, even though the growth rates of these cells were the same under in vitro culture conditions, suggesting that high-level expression of the gene is important for the suppression of tumour establishment in vivo. For the first step to study the mechanisms of BRAK-dependent tumour suppression, we compared characteristics between HSC-3 BRAK and HSC-3 Mock cells under in vitro culture conditions. The cell migration rate was lower in HSC-3 BRAK cells than in HSC-3 Mock cells. Also, HSC-3 BRAK cells showed more rapid adhesion than HSC-3 Mock cells when cultured on type I collagen-coated dishes but not on fibronectin or laminin 1-coated ones. This adhesion was mediated by alpha2beta1 integrin. Immunofluorescent analysis of the cells cultured on type I collagen showed that HSC-3 BRAK cells formed much more elongated focal adhesions co-localized with paxillin and actin stress fibres than did HSC-3 Mock cells. Treatment of parental HSC-3 cells with recombinant BRAK stimulated the activation of Rap1, which is a ras family small GTPase, and formation of elongated focal adhesions, indicating that the difference in cell character observed between HSC-3 Mock and HSC-3 BRAK was not due to selection of clones of different character but due to expression of BRAK in the cells. The characteristic morphology of focal adhesions in HSC-3 BRAK cells was perturbed by the introduction of an expression vector of the Rap-binding domain of the Ral guanine nucleotide dissociation stimulator, a target of Rap1, into HSC-3 BRAK cells, suggesting that Rap1 regulated the formation of the morphology of the focal adhesions. These data indicate that the expression of BRAK stimulated the formation of elongated focal adhesions of the HSC-3 cells in an autocrine or paracrine fashion, in which stimulation may be responsible for the reduced migration of the cells.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Quimiocinas CXC/metabolismo , Colágeno Tipo I/metabolismo , Adesões Focais , Neoplasias da Língua , Animais , Proteínas Reguladoras de Apoptose , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Quimiocinas CXC/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Adesões Focais/ultraestrutura , Proteínas de Ligação ao GTP , Humanos , Integrina alfa2beta1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Nus , Paxilina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Fator ral de Troca do Nucleotídeo Guanina/genética , Fator ral de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo
15.
Biomed Res ; 30(5): 315-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19887729

RESUMO

SCID mice are a model of human severe combined immunodeficiency disease and are deficient in B cell function in addition to T cell function. Tumors from other species are easily transplanted into SCID mice and will grow without being rejected. We previously reported that the chemokine BRAK/CXCL14 is expressed in normal cells but its expression is down regulated in an in vitro cancer progression model, suggesting that it has the potential for antitumor activity. Here we report that the growth of BRAK/CXCL14 expression vector-transfected oral cancer cells was completely (100%) suppressed in SCID mouse xenografts even though mock-vector introduced control tumor cells grew well with 100% of animals developing tumors. In addition, suppression of xenografts was much faster and the rate was much higher in SCID mice than in T cell function-deficient nude mice. These data indicate the possibility that BRAK expression inhibits tumor cell establishment by regulating interactions between tumor stem cells and NK cells and/or suppressing formation of tumor microvessels.


Assuntos
Quimiocinas CXC/imunologia , Camundongos SCID , Neoplasias Bucais/imunologia , Transplante Heterólogo/imunologia , Animais , Quimiocinas CXC/genética , Feminino , Humanos , Camundongos , Camundongos Nus/imunologia , Camundongos SCID/imunologia , Neoplasias Bucais/patologia , Transplante de Neoplasias , Transplante Heterólogo/patologia
16.
Cancer Sci ; 100(11): 2202-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19673887

RESUMO

Clinical efficacy of gefitinib (ZD1839, Iressa), which is an inhibitor specific for epidermal growth factor (EGF) receptor tyrosine kinase, has been shown in non-small-cell lung carcinoma patients with EGF receptor mutations, so these mutations are useful marker(s) to find a responder for the drug. Recent studies have shown that the EGF receptor gene mutation is rare in squamous cell carcinoma in the esophageal and head and neck regions. We previously reported that the expression of the chemokine BRAK/CXCL14 in head and neck squamous cell carcinoma (HNSCC) cells was down-regulated by EGF treatment, and that forced expression of BRAK in tumor cells decreased the tumorigenicity of the cells in xenografts. Thus, we investigated the relationship between restoration of BRAK expression by gefitinib and the efficacy of the drug for tumor suppression. We found that EGF down-regulated BRAK expression through the MEK-extracellular signal regulated kinase pathway and that this down-regulated expression was restored by gefitinib in vitro. Oral administration of gefitinib significantly (P < 0.001) reduced tumor growth of xenografts of three HNSCC cell lines (HSC-2, HSC-3, and HSC-4), in female athymic nude mice, accompanied by an increase in BRAK expression specifically in tumor tissue. This tumor-suppressing effect of the drug was not observed in the case of BRAK non-expressing cells. Furthermore introduction of BRAK shRNA vector reduced both the expression levels of BRAK in HSC-3 cells and the antitumor efficacy of gefitinib in vivo. Our data showing an inverse relationship between BRAK expression levels in tumor cells and the tumor growth rate indicate that the gefitinib-induced increase in BRAK expression is beneficial for tumor suppression in vivo.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Quimiocinas CXC/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Quinazolinas/farmacologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/genética , Gefitinibe , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Mutação , RNA Mensageiro/análise
17.
FEBS J ; 274(12): 3171-83, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17540003

RESUMO

Acidic extracellular pH is a common feature of tumor tissues. We have reported that culturing cells at acidic pH (5.4-6.5) induced matrix metalloproteinase-9 expression through phospholipase D, extracellular signal regulated kinase 1/2 and p38 mitogen-activated protein kinases and nuclear factor-kappaB. Here, we show that acidic extracellular pH signaling involves both pathways of phospholipase D triggered by Ca2+ influx and acidic sphingomyelinase in mouse B16 melanoma cells. We found that BAPTA-AM [1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl) ester], a chelator of intracellular free calcium, and the voltage dependent Ca2+ channel blockers, mibefradil (for T-type) and nimodipine (for L-type), dose-dependently inhibited acidic extracellular pH-induced matrix metalloproteinase-9 expression. Intracellular free calcium concentration ([Ca2+]i) was transiently elevated by acidic extracellular pH, and this [Ca2+]i elevation was repressed by EGTA and the voltage dependent Ca2+ channel blockers but not by phospholipase C inhibitor, suggesting that acidic extracellular pH increased [Ca2+]i through voltage dependent Ca2+ channel. In contrast, SR33557, an L-type voltage dependent Ca2+ channel blocker and acidic sphingomyelinase inhibitor, attenuated matrix metalloproteinase-9 induction but did not affect calcium influx. We found that acidic sphingomyelinase activity was induced by acidic extracellular pH and that the specific acidic sphingomyelinase inhibitors (perhexiline and desipramine) and siRNA targeting aSMase/smpd1 could inhibit acidic extracellular pH-induced matrix metalloproteinase-9 expression. BAPTA-AM reduced acidic extracellular pH-induced phospholipase D but not acidic sphingomyelinase acitivity. The acidic sphingomyelinase inhibitors did not affect the phosphorylation of extracellular signal regulated kinase 1/2 and p38, but they suppressed nuclear factor-kappaB activity. These data suggest that the calcium influx-triggered phospholipase D and acidic sphingomyelinase pathways of acidic extracellular pH induced matrix metalloproteinase-9 expression, at least in part, through nuclear factor-kappaB activation.


Assuntos
Cálcio/metabolismo , Líquido Extracelular/química , Metaloproteinase 9 da Matriz/biossíntese , Melanoma/enzimologia , Fosfolipase D/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/fisiologia , Linhagem Celular Tumoral , Quelantes/farmacologia , Desipramina/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Ativação Enzimática , Concentração de Íons de Hidrogênio , Indolizinas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 9 da Matriz/genética , Melanoma/secundário , Mibefradil/farmacologia , Camundongos , NF-kappa B/metabolismo , Nimodipina/farmacologia , Perexilina/farmacologia , Fenetilaminas/farmacologia , Fosfolipase D/antagonistas & inibidores , Fosforilação , Regiões Promotoras Genéticas , Esfingomielina Fosfodiesterase/antagonistas & inibidores
18.
Matrix Biol ; 26(5): 371-81, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17306970

RESUMO

Collagen has been reported to be essential for the proliferation of various kinds of cells including human osteoblastic cells [Takamizawa, S., Maehata, Y., Imai, K., Senoo, H., Sato, S., Hata, R., 2004. Effects of ascorbic acid and ascorbic acid 2-phosphate, a long-acting vitamin C derivative, on the proliferation and differentiation of human osteoblast-like cells. Cell Biol. Int. 28, 255-265], but the type(s) of collagen responsible for growth regulation is not known. Presently we found that ascorbic acid 2-phosphate, a long-acting vitamin C derivative, stimulated both cell growth and the expression of mRNA for type III collagen in human osteoblast-like MG-63 cells and in normal human osteoblasts, as well as in human bone marrow mesenchymal stem cells, but not the expression of type I collagen in these cells. Epidermal growth factor also stimulated both cell growth and expression of type III collagen mRNA in MG-63 cells. Among MG-63 cell clones, their growth rates correlated significantly with their COL3A1 messenger RNA levels but not with their COL1A1 or COL1A2 messenger RNA levels. Transfection of MG-63 cells with siRNA for COL3A1 but not with that for COL1A1 decreased the growth rates of the transfected cells concomitant with a drop in the level of COL3A1 mRNA. Furthermore, cell proliferation as observed by thymidine incorporation into DNA and cell number was increased when MG-63 cells were cultured on type III collagen-coated dishes. Taken together, our results indicate that type III collagen is the collagen component responsible for the growth stimulation of human osteoblastic cells.


Assuntos
Ácido Ascórbico/análogos & derivados , Colágeno Tipo III/metabolismo , Osteoblastos/fisiologia , Ácido Ascórbico/farmacologia , Colágeno Tipo III/genética , Fator de Crescimento Epidérmico/farmacologia , Regulação da Expressão Gênica , Humanos , Osteoblastos/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
19.
Biochem Biophys Res Commun ; 348(2): 406-12, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16884687

RESUMO

In order to find a suppressor(s) of tumor progression in vivo for oral carcinoma (OC), we searched for molecules down-regulated in OC cells when the cells were treated with epidermal growth factor (EGF), whose receptor is frequently over-activated in OC. The expression of BRAK, which is also known as CXC chemokine ligand14 (CXCL14), was down-regulated significantly by the treatment of OC cells with EGF as observed by cDNA microarray analysis followed by reverse-transcriptase polymerase chain reaction analysis. The EGF effect was attenuated by the co-presence of a MEK inhibitor. The rate of tumor formation in vivo of BRAK-expressing vector-transfected tumor cells in athymic nude mice was significantly lower than that of mock vector-transfected ones. In addition tumors formed in vivo by the BRAK-expressing cells were significantly smaller than those of the mock-transfected ones. These results indicate that BRAK/CXCL14 is a chemokine, having suppressive activity toward tumor progression of OC in vivo.


Assuntos
Carcinoma de Células Escamosas/fisiopatologia , Quimiocinas CXC/fisiologia , Neoplasias da Língua/fisiopatologia , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Quimiocinas CXC/uso terapêutico , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Transplante de Neoplasias , Transdução de Sinais , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/patologia , Transfecção , Proteínas Supressoras de Tumor/fisiologia
20.
Matrix Biol ; 25(1): 47-58, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16266799

RESUMO

In order to investigate the mechanisms by which 1alpha,25(OH)2 vitamin D3 (VD3) stimulates the differentiation of human osteoblasts, we cultured MG-63, which is a human osteoblastic cell line, in the presence or absence of VD3 and/or L-ascorbic acid 2-phosphate (Asc 2-P), a long-acting vitamin C derivative. The cell growth rate was decreased by the presence of VD3 in the culture medium. Type I collagen synthesis and alkaline phosphatase (ALP) activity, which are markers of early stage osteoblast differentiation, were stimulated by the presence of VD3 as well as by that of Asc 2-P. The co-presence of Asc 2-P and VD3 had a synergistic effect on the collagen synthesis and ALP activity of the cells. Inhibition of collagen synthesis by the addition of inhibitors of collagen synthesis to the medium attenuated the stimulative effect of VD3 and Asc 2-P on the ALP activity. Transfection of the cells with siRNA-expressing vectors for COL1A1 decreased the expression level of ALP mRNA in addition to that of COL1A1. On the other hand, ALP activity was significantly increased, and the growth rate was decreased, when the cells were cultured on type I collagen-coated dishes. These effects were not seen when the cells were cultured on dishes coated with heat-denatured collagen. VD3 also increased the mRNA levels for Runx2 and osterix, which are transcription factors critical for osteoblast differentiation, as well as those of differentiation markers such as bone/liver/kidney type ALP, COL1A1, (the gene for the alpha1 chain of type I collagen), and osteocalcin, in the cells. Normal human osteoblasts and human bone marrow-derived mesenchymal stem cells (hBMSC) showed quite similar responses to VD3. These results indicate that VD3-stimulated gene expression of type I collagen and that mature type I collagen produced in the presence of Asc 2-P mediates at least a part of the stimulative effects of Asc 2-P and VD3 on the differentiation of these human osteoblastic cells. Levels of mRNAs for ALP and COL1A1 were increased, but the level of Runx2 was decreased, by the expression of osterix in MG-63 cells. These results also suggest that VD3 controls the growth and differentiation of human osteoblastic cells by regulating the gene expression of osteoblast-related transcription factors as well as that of type I collagen, and that the co-presence of both signals is essential for VD3 to express full activity toward the differentiation of human osteoblasts.


Assuntos
Diferenciação Celular/fisiologia , Colecalciferol/metabolismo , Colágeno Tipo I/metabolismo , Osteoblastos/fisiologia , Fatores de Transcrição/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Regulação da Expressão Gênica , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Transcrição Sp7 , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA