Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroendocrinology ; 113(8): 822-833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040730

RESUMO

INTRODUCTION: Asprosin is an adipokine released from white adipose tissue during fasting and acts through the olfactory receptor. It is known that adipokines play roles in reproductive physiology in mammals. However, there are very few studies conducted on role of asprosin in reproductive functions. There are no studies on its relationship with sexual motivation. It was shown in the literature that administration of asprosin to male mice improves olfaction. It is also known that there is a strong correlation between smell and sexual desire. In view of this, it was hypothesized that chronic administration of asprosin would improve olfactory performance and increase sexual incentive motivation in female rats for male partners. METHODS: This hypothesis was tested by applying the hidden cookie test, sexual incentive test, active research test, and sexual behavior test. The changes in serum hormone levels in female rats that chronically received asprosin were also measured and compared. RESULTS: Chronic asprosin exposure increased olfactory performance, male preference ratio, male investigation preference ratio, activity index, and anogenital investigation behavior. Also, serum oxytocin and estradiol levels increased following chronic administration of asprosin in female rats. CONCLUSION: These data suggest that chronic administration of asprosin can result in increased sexual incentive motivation for opposite sex in female rats over increased olfactory performance and changes in reproductive hormones.


Assuntos
Comportamento Sexual Animal , Olfato , Ratos , Masculino , Camundongos , Feminino , Animais , Olfato/fisiologia , Comportamento Sexual Animal/fisiologia , Ocitocina , Motivação , Jejum , Mamíferos
2.
Neurosci Lett ; 806: 137245, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37061025

RESUMO

Monoaminergic systems are known to be involved in the pathophysiology of neuropsychiatric disorders and vegetative functions due to their established influence on hypothalamic and subcortical areas. These systems can be modulated by lifestyle factors, especially exercise, which is known to produce several beneficial effects on reproduction, brain health, and mental disorders. The fact that exercise is sensed by the brain shows that muscle-stimulated secretion of myokines allows direct crosstalk between the muscles and the brain. One of such exercise-induced beneficial effects on the brain is exhibited by irisin-a recently discovered PGC-1α-dependent adipo-myokine mainly secreted from skeletal muscle during exercise. Thus, we hypothesized that irisin may affect central monoamine levels and thus play an important role in the muscle-brain endocrine loop. To test this assertion, for 10 weeks, vehicle (deionized water) or 100 ng/kg irisin was injected intraperitoneally once a day to 12 male and 12 female rats after which the levels of monoamines and their metabolites were determined by HPLC-ECD. In the hypothalamic nuclei, irisin significantly decreased dopamine (DA) metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) (p < 0.05), DOPAC/DA ratio (p < 0.01) and noradrenaline (NA, p < 0.05) levels in the anteroventral periventricular nucleus (AVPV), and DOPAC and NA levels in the medial preoptic area (mPOA) (p < 0.05), having a crucial role in reproduction and sexual motivation, respectively. On the other hand, irisin significantly increased DOPAC levels in the lateral hypothalamic area (LHA) (p < 0.05), which acts as a hunger center, while it significantly decreased the levels of DA, NA, and its metabolite 3,4-dihydroxyphenylglycol (DHPG) in the ventromedial hypothalamic nucleus (VMH) as a known satiety center (p < 0.05). In nucleus accumbens (NaC), irisin significantly reduced 5-hydroxyindoleacetic acid (5-HIAA) levels (p < 0.05), which are implicated in autism spectrum disorder (ASD) physiopathology. It also significantly increased DA levels in this area, thus exhibiting positive effects on depression and sexual dysfunction in men. On the other hand, it significantly decreased serotonin (5-HT) (p < 0.01) and its metabolite 5-HIAA levels in the medial amygdala (MeA) (p < 0.05), indicating that it may play a role in social behaviors. Moreover, it significantly attenuated NA levels in the same subcortical area (p < 0.01), which is directly involved in stress-induced activation of the central noradrenergic system. These findings demonstrate for the first time that irisin induces significant changes in monoamine levels in many hypothalamic nuclei involved in feeding behavior and vegetative functions, as well as in subcortical nuclei related to neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Fibronectinas , Ratos , Masculino , Feminino , Animais , Fibronectinas/metabolismo , Cromatografia Líquida de Alta Pressão , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Dopamina/metabolismo , Norepinefrina/metabolismo , Serotonina/metabolismo
3.
Arch Physiol Biochem ; 129(5): 1038-1044, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33663304

RESUMO

OBJECTIVES: We aimed to investigate the effects of asprosin on diabetes with a focus on serum glucose, irisin, ghrelin, leptin levels and hepatic levels of triglycerides (TG), cholesterol, low-density lipoprotein (LDL). METHODS: Asprosin (10 µg/kg) was administered intraperitoneally four times at 3-day intervals and then blood and hepatic parameters above mentioned were investigated in control and diabetic mice. RESULTS: The administration of asprosin increased blood glucose level in healthy animals (p = .05) whereas it did not change blood glucose level in diabetic animals. In addition, while asprosin decreased irisin level and increased ghrelin level, it did not change leptin level in diabetic mice. Therewithal, asprosin decreased the increasing levels in hepatic TG, cholesterol, and LDL in diabetic mice. CONCLUSIONS: Our novel findings implicate that asprosin may be a target molecule in preventing the development and complications of diabetes.


Assuntos
Diabetes Mellitus Experimental , Grelina , Camundongos , Animais , Glicemia , Leptina , Adipocinas , Fibronectinas , Glucose , Triglicerídeos
4.
Front Psychiatry ; 12: 654616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267684

RESUMO

Insomnia, which is associated with menopausal depression, is a common symptom of menopause. Both symptoms have a common etiology, and can affect each other significantly. Pharmacological interventions, including hypnotics and antidepressants, and non-pharmacological therapies are generally administered in clinical practice for insomnia treatment. As another menopausal disorder, osteoporosis is described as a disease of low bone mineral density (BMD), affecting nearly 200 million women worldwide. Postmenopausal osteoporosis is common among middle-aged women. Since postmenopausal osteoporosis mainly results from low estrogen levels, menopausal hormone therapy (HT) is considered the first-line option for the prevention of osteoporosis during the menopausal period. However, almost no study has evaluated novel treatments for the combined prevention of insomnia, depression, and osteoporosis. Hence, it is necessary to develop new multi-target strategies for the treatment of these disorders to improve the quality of life during this vulnerable period. Melatonin is the major regulator of sleep, and it has been suggested to be safe and effective for bone loss therapy by MT-2 receptor activity. As a result, we hypothesize that agomelatine, an MT-1 and MT-2 receptor agonist and 5-HT2C receptor antagonist, holds promise in the combined treatment of insomnia, depression, and osteoporosis in middle-aged women during menopause.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA