Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(21): 4941-4948, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37212799

RESUMO

We perform low-temperature magneto-conductance measurements on Cu and Au thin films with adsorbed chiral molecules and investigate their phase-coherent transport properties. Upon adsorption of chiral molecules, the spin-orbit coupling strength in Cu decreases and the Au films become ferromagnetic as evident from weak localization and antilocalization data. A theoretical model indicates that anisotropy in the molecular tilt angles, provided that the chiral molecules act as magnetic moments, induces a nonvanishing magnetic exchange interaction, causing changes in the spin-orbit coupling strength in Cu and Au. Our work adds a new viewpoint to the plethora of unique phenomena emerging from chiral molecule adsorption on materials.

2.
ACS Appl Mater Interfaces ; 15(12): 15668-15675, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920349

RESUMO

We describe the unusual properties of γ-SnSe, a new orthorhombic binary phase in the tin monoselenide system. This phase exhibits an ultranarrow band gap under standard pressure and temperature conditions, leading to high conductivity under ambient conditions. Density functional calculations identified the similarity and difference between the new γ-SnSe phase and the conventional α-SnSe based on the electron localization function. Very good agreement was obtained for the band gap width between the band structure calculations and the experiment, and insight provided for the mechanism of reduction in the band gap. The unique properties of this material may render it useful for applications such as thermal imaging devices and solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA