Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 43, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803838

RESUMO

BACKGROUND: Astrocytes play a central role in maintaining brain energy metabolism, but are also tightly connected to the pathogenesis of Alzheimer's disease (AD). Our previous studies demonstrate that inflammatory astrocytes accumulate large amounts of aggregated amyloid-beta (Aß). However, in which way these Aß deposits influence their energy production remain unclear. METHODS: The aim of the present study was to investigate how Aß pathology in astrocytes affects their mitochondria functionality and overall energy metabolism. For this purpose, human induced pluripotent cell (hiPSC)-derived astrocytes were exposed to sonicated Aß42 fibrils for 7 days and analyzed over time using different experimental approaches. RESULTS: Our results show that to maintain stable energy production, the astrocytes initially increased their mitochondrial fusion, but eventually the Aß-mediated stress led to abnormal mitochondrial swelling and excessive fission. Moreover, we detected increased levels of phosphorylated DRP-1 in the Aß-exposed astrocytes, which co-localized with lipid droplets. Analysis of ATP levels, when blocking certain stages of the energy pathways, indicated a metabolic shift to peroxisomal-based fatty acid ß-oxidation and glycolysis. CONCLUSIONS: Taken together, our data conclude that Aß pathology profoundly affects human astrocytes and changes their entire energy metabolism, which could result in disturbed brain homeostasis and aggravated disease progression.


Assuntos
Doença de Alzheimer , Astrócitos , Humanos , Astrócitos/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Metabolismo Energético , Mitocôndrias/patologia
2.
Cancer Res Commun ; 2(9): 1075-1088, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36922937

RESUMO

The tumor suppressor protein p53 is mutated in close to 50% of human tumors and is dysregulated in many others, for instance by silencing or loss of p14ARF. Under steady-state conditions, the two E3 ligases MDM2/MDM4 interact with and inhibit the transcriptional activity of p53. Inhibition of p53-MDM2/4 interaction to reactivate p53 in tumors with wild-type (WT) p53 has therefore been considered a therapeutic strategy. Moreover, studies indicate that p53 reactivation may synergize with radiation and increase tumor immunogenicity. In vivo studies of most MDM2 inhibitors have utilized immunodeficient xenograft mouse models, preventing detailed studies of action of these molecules on the immune response. The mouse melanoma cell line B16-F10 carries functional, WT p53 but does not express the MDM2 regulator p19ARF. In this study, we tested a p53-MDM2 protein-protein interaction inhibitor, the small molecule Navtemadlin, which is currently being tested in phase II clinical trials. Using mass spectrometry-based proteomics and imaging flow cytometry, we identified specific protein expression patterns following Navtemadlin treatment of B16-F10 melanoma cells compared with their p53 CRISPR-inactivated control cells. In vitro, Navtemadlin induced a significant, p53-dependent, growth arrest but little apoptosis in B16-F10 cells. When combined with radiotherapy, Navtemadlin showed synergistic effects and increased apoptosis. In vivo, Navtemadlin treatment significantly reduced the growth of B16-F10 melanoma cells implanted in C57Bl/6 mice. Our data highlight the utility of a syngeneic B16-F10 p53+/+ mouse melanoma model for assessing existing and novel p53-MDM2/MDM4 inhibitors and in identifying new combination therapies that can efficiently eliminate tumors in vivo. Significance: The MDM2 inhibitor Navtemadlin arrests mouse tumor growth and potentiates radiotherapy. Our results support a threshold model for apoptosis induction that requires a high, prolonged p53 signaling for cancer cells to become apoptotic.


Assuntos
Antineoplásicos , Melanoma Experimental , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/metabolismo , Melanoma Experimental/tratamento farmacológico , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ciclo Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA