Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
FASEB J ; 38(9): e23633, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690712

RESUMO

Recent reports suggest that the Hippo signaling pathway regulates testis development, though its exact roles in Sertoli cell differentiation remain unknown. Here, we examined the functions of the main Hippo pathway kinases, large tumor suppressor homolog kinases 1 and 2 (Lats1 and Lats2) in developing mouse Sertoli cells. Conditional inactivation of Lats1/2 in Sertoli cells resulted in the disorganization and overgrowth of the testis cords, the induction of a testicular inflammatory response and germ cell apoptosis. Stimulated by retinoic acid 8 (STRA8) expression in germ cells additionally suggested that germ cells may have been preparing to enter meiosis prior to their loss. Gene expression analyses of the developing testes of conditional knockout animals further suggested impaired Sertoli cell differentiation, epithelial-to-mesenchymal transition, and the induction of a specific set of genes associated with Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ)-mediated integrin signaling. Finally, the involvement of YAP/TAZ in Sertoli cell differentiation was confirmed by concomitantly inactivating Yap/Taz in Lats1/2 conditional knockout model, which resulted in a partial rescue of the testicular phenotypic changes. Taken together, these results identify Hippo signaling as a crucial pathway for Sertoli cell development and provide novel insight into Sertoli cell fate maintenance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Proteínas Serina-Treonina Quinases , Células de Sertoli , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Animais , Células de Sertoli/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Masculino , Camundongos , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Diferenciação Celular/fisiologia , Camundongos Knockout , Transdução de Sinais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Testículo/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Transativadores/metabolismo , Transativadores/genética
2.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617313

RESUMO

Most TGFß family ligands exist as procomplexes consisting of a prodomain noncovalently bound to a growth factor (GF); Whereas some prodomains confer latency, the Anti-Müllerian Hormone (AMH) prodomain maintains a remarkably high affinity for the GF yet remains active. Using single particle EM methods, we show the AMH prodomain consists of two subdomains: a vestigial TGFß prodomain-like fold and a novel, helical bundle GF-binding domain, the result of an exon insertion 450 million years ago, that engages both receptor epitopes. When associated with the prodomain, the AMH GF is distorted into a strained, open conformation whose closure upon bivalent binding of AMHR2 displaces the prodomain through a conformational shift mechanism to allow for signaling.

3.
NPJ Precis Oncol ; 8(1): 7, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191909

RESUMO

Frequent relapse and chemoresistance cause poor outcome in ovarian cancer (OC) and cancer stem cells (CSCs) are important contributors. While most studies focus exclusively on CSCs, the role of the microenvironment in providing optimal conditions to maintain their tumor-initiating potential remains poorly understood. Cancer associated fibroblasts (CAFs) are a major constituent of the OC tumor microenvironment and we show that CAFs and CSCs are enriched following chemotherapy in patient tumors. CAFs significantly increase OC cell resistance to carboplatin. Using heterotypic CAF-OC cocultures and in vivo limiting dilution assay, we confirm that the CAFs act by enriching the CSC population. CAFs increase the symmetric division of CSCs as well as the dedifferentiation of bulk OC cells into CSCs. The effect of CAFs is limited to OC cells in their immediate neighborhood, which can be prevented by inhibiting Wnt. Analysis of single cell RNA-seq data from OC patients reveal Wnt5a as the highest expressed Wnt in CAFs and that certain subpopulations of CAFs express higher levels of Wnt5a. Our findings demonstrate that Wnt5a from CAFs activate a noncanonical Wnt signaling pathway involving the ROR2/PKC/CREB1 axis in the neighboring CSCs. While canonical Wnt signaling is found to be predominant in interactions between cancer cells in patients, non-canonical Wnt pathway is activated by the CAF-OC crosstalk. Treatment with a Wnt5a inhibitor sensitizes tumors to carboplatin in vivo. Together, our results demonstrate a novel mechanism of CSC maintenance by signals from the microenvironmental CAFs, which can be targeted to treat OC chemoresistance and relapse.

4.
Reproduction ; 166(3): 221-234, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37432973

RESUMO

In brief: Nicotinic acetylcholine receptor alpha 7 (nAChRa7), encoded by Chrna7, is expressed by various murine ovarian cells. Morphological and molecular investigations, including a proteomic study of adult Chrna7 knockout (KO) mouse ovaries, reveal the roles of these receptors in the local regulation of the ovary. Abstract: Nicotinic acetylcholine receptor alpha 7 (nAChRa7), encoded by Chrna7, is involved in cellular functions ranging from synaptic transmission in neurons to regulation of inflammation, cell growth and metabolism to cell death in other cells. Our qPCR results and other studies indicated that nAChRa7 is expressed in the adult mouse ovary, while in situ hybridization and single-cell sequencing data suggested this expression may be shared by several ovarian cells, including fibroblast-like and steroidogenic stroma cells, macrophages and oocytes of small follicles. To explore a possible involvement of nAChRa7 in ovarian functions, we evaluated ovarian morphology of Chrna7-null mutant adult mice (KO) and wildtype mice (WT; 3 months, metestrus) by performing immunohistochemistry, qPCR studies, measurements of serum progesterone and proteomic analyses. The evaluation of serial sections indicated fewer primordial follicles but similar numbers of primary, secondary and tertiary follicles, as well as corpora lutea in KO and WT mice. Atresia was unchanged. Serum progesterone and mRNA levels of proliferation and most apoptosis markers were not changed, yet two typical macrophage markers were elevated. Furthermore, the proteomes of KO ovaries were significantly altered with 96 proteins increased and 32 decreased in abundance in KOs compared to WTs. Among the elevated proteins were markers for stroma cells. Hence, the lack of nAChRa7 causes changes in small follicle counts and alterations of the ovarian stroma cells. The ovarian phenotype of Chrna7 mutant mice links this channel protein to the local regulation of ovarian cells, including stroma cells.


Assuntos
Ovário , Receptores Nicotínicos , Animais , Feminino , Camundongos , Camundongos Knockout , Ovário/metabolismo , Fenótipo , Progesterona/metabolismo , Proteômica , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
5.
Nat Commun ; 14(1): 3140, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280258

RESUMO

Eighty percent of the estimated 600 million domestic cats in the world are free-roaming. These cats typically experience suboptimal welfare and inflict high levels of predation on wildlife. Additionally, euthanasia of healthy animals in overpopulated shelters raises ethical considerations. While surgical sterilization is the mainstay of pet population control, there is a need for efficient, safe, and cost-effective permanent contraception alternatives. Herein, we report evidence that a single intramuscular treatment with an adeno-associated viral vector delivering an anti-Müllerian hormone transgene produces long-term contraception in the domestic cat. Treated females are followed for over two years, during which transgene expression, anti-transgene antibodies, and reproductive hormones are monitored. Mating behavior and reproductive success are measured during two mating studies. Here we show that ectopic expression of anti-Müllerian hormone does not impair sex steroids nor estrous cycling, but prevents breeding-induced ovulation, resulting in safe and durable contraception in the female domestic cat.


Assuntos
Hormônio Antimülleriano , Hormônios Peptídicos , Gatos , Animais , Feminino , Hormônio Antimülleriano/genética , Anticoncepção/métodos , Anticoncepção/veterinária , Esterilização Reprodutiva/métodos , Esterilização Reprodutiva/veterinária , Controle da População/métodos , Animais Selvagens
6.
Elife ; 112022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36205477

RESUMO

The estrous cycle is regulated by rhythmic endocrine interactions of the nervous and reproductive systems, which coordinate the hormonal and ovulatory functions of the ovary. Folliculogenesis and follicle progression require the orchestrated response of a variety of cell types to allow the maturation of the follicle and its sequela, ovulation, corpus luteum formation, and ovulatory wound repair. Little is known about the cell state dynamics of the ovary during the estrous cycle and the paracrine factors that help coordinate this process. Herein, we used single-cell RNA sequencing to evaluate the transcriptome of >34,000 cells of the adult mouse ovary and describe the transcriptional changes that occur across the normal estrous cycle and other reproductive states to build a comprehensive dynamic atlas of murine ovarian cell types and states.


Assuntos
Ovário , Ovulação , Animais , Ciclo Estral/fisiologia , Feminino , Camundongos , Folículo Ovariano/fisiologia , Ovulação/fisiologia , Pelve
7.
J Clin Invest ; 132(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35708912

RESUMO

Aberrant expression of viral-like repeat elements is a common feature of epithelial cancers, and the substantial diversity of repeat species provides a distinct view of the cancer transcriptome. Repeatome profiling across ovarian, pancreatic, and colorectal cell lines identifies distinct clustering independent of tissue origin that is seen with coding gene analysis. Deeper analysis of ovarian cancer cell lines demonstrated that human satellite II (HSATII) satellite repeat expression was highly associated with epithelial-mesenchymal transition (EMT) and anticorrelated with IFN-response genes indicative of a more aggressive phenotype. SATII expression - and its correlation with EMT and anticorrelation with IFN-response genes - was also found in ovarian cancer RNA-Seq data and was associated with significantly shorter survival in a second independent cohort of patients with ovarian cancer. Repeat RNAs were enriched in tumor-derived extracellular vesicles capable of stimulating monocyte-derived macrophages, demonstrating a mechanism that alters the tumor microenvironment with these viral-like sequences. Targeting of HSATII with antisense locked nucleic acids stimulated IFN response and induced MHC I expression in ovarian cancer cell lines, highlighting a potential strategy of modulating the repeatome to reestablish antitumor cell immune surveillance.


Assuntos
Neoplasias Ovarianas , RNA Satélite , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/genética , Fenótipo , RNA , Microambiente Tumoral/genética
8.
Cancer Discov ; 12(8): 1904-1921, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35552618

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid enriched in the tumor microenvironment of immunosuppressive malignancies such as ovarian cancer. Although LPA enhances the tumorigenic attributes of cancer cells, the immunomodulatory activity of this phospholipid messenger remains largely unexplored. Here, we report that LPA operates as a negative regulator of type I interferon (IFN) responses in ovarian cancer. Ablation of the LPA-generating enzyme autotaxin (ATX) in ovarian cancer cells reprogrammed the tumor immune microenvironment, extended host survival, and improved the effects of therapies that elicit protective responses driven by type I IFN. Mechanistically, LPA sensing by dendritic cells triggered PGE2 biosynthesis that suppressed type I IFN signaling via autocrine EP4 engagement. Moreover, we identified an LPA-controlled, immune-derived gene signature associated with poor responses to combined PARP inhibition and PD-1 blockade in patients with ovarian cancer. Controlling LPA production or sensing in tumors may therefore be useful to improve cancer immunotherapies that rely on robust induction of type I IFN. SIGNIFICANCE: This study uncovers that ATX-LPA is a central immunosuppressive pathway in the ovarian tumor microenvironment. Ablating this axis sensitizes ovarian cancer hosts to various immunotherapies by unleashing protective type I IFN responses. Understanding the immunoregulatory programs induced by LPA could lead to new biomarkers predicting resistance to immunotherapy in patients with cancer. See related commentary by Conejo-Garcia and Curiel, p. 1841. This article is highlighted in the In This Issue feature, p. 1825.


Assuntos
Interferon Tipo I , Lisofosfolipídeos , Neoplasias Ovarianas , Feminino , Humanos , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Microambiente Tumoral
9.
Proc Natl Acad Sci U S A ; 119(15): e2122512119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35380904

RESUMO

We identified the anti-Mullerian hormone (also known as Müllerian inhibiting substance or MIS) as an inhibitory hormone that induces long-term contraception in mammals. The type II receptor to this hormone, AMHR2 (also known as MISR2), represents a promising druggable target for the modulation of female reproduction with a mechanism of action distinct from steroidal contraceptives. We designed an in vitro platform to screen and validate small molecules that can activate MISR2 signaling and suppress ovarian folliculogenesis. Using a bone morphogenesis protein (BMP)­response element luciferase reporter cell­based assay, we screened 5,440 compounds from a repurposed drug library. Positive hits in this screen were tested for specificity and potency in luciferase dose­response assays, and biological activity was tested in ex vivo Mullerian duct regression bioassays. Selected candidates were further evaluated in ex vivo follicle/ovary culture assays and in vivo in mice and rats. Here, we report that SP600125, CYC-116, gandotinib, and ruxolitinib can specifically inhibit primordial follicle activation and repress folliculogenesis by stimulating the MISR2 pathway.


Assuntos
Anticoncepcionais , Reposicionamento de Medicamentos , Folículo Ovariano , Receptores de Peptídeos , Receptores de Fatores de Crescimento Transformadores beta , Bibliotecas de Moléculas Pequenas , Animais , Antracenos/química , Antracenos/farmacologia , Anticoncepcionais/química , Anticoncepcionais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Camundongos , Nitrilas/química , Nitrilas/farmacologia , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Ratos , Receptores de Peptídeos/agonistas , Receptores de Fatores de Crescimento Transformadores beta/agonistas , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tiazóis/química , Tiazóis/farmacologia
10.
Sci Adv ; 8(10): eabi7315, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263130

RESUMO

Anti-Müllerian hormone (AMH) is produced by growing ovarian follicles and provides a diagnostic measure of reproductive reserve in women; however, the impact of AMH on folliculogenesis is poorly understood. We cotransplanted human ovarian cortex with control or AMH-expressing endothelial cells in immunocompromised mice and recovered antral follicles for purification and downstream single-cell RNA sequencing of granulosa and theca/stroma cell fractions. A total of 38 antral follicles were observed (19 control and 19 AMH) at long-term intervals (>10 weeks). In the context of exogenous AMH, follicles exhibited a decreased ratio of primordial to growing follicles and antral follicles of increased diameter. Transcriptomic analysis and immunolabeling revealed a marked increase in factors typically noted at more advanced stages of follicle maturation, with granulosa and theca/stroma cells also displaying molecular hallmarks of luteinization. These results suggest that superphysiologic AMH alone may contribute to ovulatory dysfunction by accelerating maturation and/or luteinization of antral-stage follicles.


Assuntos
Hormônio Antimülleriano , Células Endoteliais , Animais , Feminino , Xenoenxertos , Humanos , Luteinização , Camundongos , Folículo Ovariano/fisiologia
11.
Pediatr Res ; 91(5): 1090-1098, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34750520

RESUMO

BACKGROUND: During the COVID-19 pandemic, thousands of pregnant women have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The implications of maternal SARS-CoV-2 infection on fetal and childhood well-being need to be characterized. We aimed to characterize the fetal immune response to maternal SARS-CoV-2 infection. METHODS: We performed single-cell RNA-sequencing and T cell receptor sequencing on cord blood mononuclear cells (CBMCs) from newborns of mothers infected with SARS-CoV-2 in the third trimester (cases) or without SARS-CoV-2 infection (controls). RESULTS: We identified widespread gene expression changes in CBMCs from cases, including upregulation of interferon-stimulated genes and major histocompatibility complex genes in CD14+ monocytes, transcriptional changes suggestive of activation of plasmacytoid dendritic cells, and activation and exhaustion of natural killer cells. Lastly, we observed fetal T cell clonal expansion in cases compared to controls. CONCLUSIONS: As none of the infants were infected with SARS-CoV-2, our results suggest that maternal SARS-CoV-2 infection might modulate the fetal immune system in the absence of vertical transmission. IMPACT: The implications of maternal SARS-CoV-2 infection in the absence of vertical transmission on fetal and childhood well-being are poorly understood. Maternal SARS-CoV-2 infection might modulate the fetal immune system in the absence of vertical transmission. This study raises important questions about the untoward effects of maternal SARS-CoV-2 on the fetus, even in the absence of vertical transmission.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Criança , Feminino , Feto , Humanos , Imunidade , Imunofenotipagem , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Pandemias , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , SARS-CoV-2
12.
Sci Transl Med ; 13(617): eabi7428, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34664987

RESUMO

There is a persistent bias toward higher prevalence and increased severity of coronavirus disease 2019 (COVID-19) in males. Underlying mechanisms accounting for this sex difference remain incompletely understood. Interferon responses have been implicated as a modulator of COVID-19 disease in adults and play a key role in the placental antiviral response. Moreover, the interferon response has been shown to alter Fc receptor expression and therefore may affect placental antibody transfer. Here, we examined the intersection of maternal-fetal antibody transfer, viral-induced placental interferon responses, and fetal sex in pregnant women infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Placental Fc receptor abundance, interferon-stimulated gene (ISG) expression, and SARS-CoV-2 antibody transfer were interrogated in 68 human pregnancies. Sexually dimorphic expression of placental Fc receptors, ISGs and proteins, and interleukin-10 was observed after maternal SARS-CoV-2 infection, with up-regulation of these features in placental tissue of pregnant individuals with male fetuses. Reduced maternal SARS-CoV-2­specific antibody titers and impaired placental antibody transfer were also observed in pregnancies with a male fetus. These results demonstrate fetal sex-specific maternal and placental adaptive and innate immune responses to SARS-CoV-2.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Feminino , Humanos , Imunidade , Transmissão Vertical de Doenças Infecciosas , Placenta , Gravidez , SARS-CoV-2
13.
Environ Int ; 157: 106809, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34375942

RESUMO

Exposure to phthalates, endocrine-disrupting chemicals commonly used as plasticizers and in consumer products, has been associated with infertility and premature ovarian failure. Our objective was to investigate whether urinary phthalate metabolite concentrations were associated with pre-ovulatory follicular fluid (FF) anti-müllerian hormone (AMH) concentrations in women undergoing fertility treatment. This cross-sectional analysis included 138 women with urinary phthalate data available in the Environment and Reproductive Health (EARTH) Study (2010-2016) in whom FF AMH concentrations were quantified using a sandwich enzyme-linked immunosorbent assay (ELISA). We also quantified 8 phthalate metabolite concentrations using tandem mass spectrometry in 1-2 urine samples per cycle (total 331 urines) and calculated the cycle-specific geometric mean for each metabolite. We applied cluster-weighted generalized estimating equation models (CWGEE) to evaluate the associations of tertiles of urinary phthalate metabolite concentrations with log-transformed FF AMH concentrations adjusting for potential confounders. Study participants had median age of 34.0 years (IQR 32.0, 37.0), 83% were white, and median BMI of 23.1 kg/m2 (IQR 21.2, 26.1). The following stimulation protocols were used: luteal phase agonist (70%), antagonist (14%), or flare (16%). Urinary concentrations of select phthalate metabolites were negatively associated with FF AMH. For example, women whose urinary mEOHP was in the lowest tertile (range 0.30-4.04 ng/ml) had an adjusted mean FF AMH of 0.72 ng/mL (95% CI = 0.36, 1.44), compared to women in the highest tertile (range 9.90-235), who had an adjusted mean of 0.24 ng/mL (95% CI = 0.12-0.48, p < 0.05). The negative association between urinary concentrations of certain phthalate metabolites with FF AMH concentrations may have implications for antral follicle recruitment and fertility treatment outcomes.


Assuntos
Hormônio Antimülleriano , Ácidos Ftálicos , Adulto , Estudos Transversais , Feminino , Líquido Folicular , Humanos
14.
J Infect Dis ; 224(Suppl 6): S647-S659, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34293137

RESUMO

BACKGROUND: Expression of angiotensin-converting enzyme 2 (ACE2) and type II transmembrane serine protease (TMPRSS2), host molecules required for viral entry, may underlie sex differences in vulnerability to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We investigated whether placental ACE2 and TMPRSS2 expression vary by fetal sex in the presence of maternal SARS-CoV-2 infection. METHODS: Placental ACE2 and TMPRSS2 expression was quantified by quantitative reverse transcription polymerase chain reaction (RT-PCR) and by Western blot in 68 pregnant women (38 SARS-CoV-2 positive, 30 SARS-CoV-2 negative) delivering at Mass General Brigham from April to June 2020. The impact of fetal sex and maternal SARS-CoV-2 exposure on ACE2 and TMPRSS2 was analyzed by 2-way analysis of variance (ANOVA). RESULTS: Maternal SARS-CoV-2 infection impacted placental TMPRSS2 expression in a sexually dimorphic fashion (2-way ANOVA interaction, P = .002). We observed no impact of fetal sex or maternal SARS-CoV-2 status on ACE2. TMPRSS2 expression was significantly correlated with ACE2 expression in males (Spearman ρ = 0.54, P = .02) but not females (ρ = 0.23, P = .34) exposed to maternal SARS-CoV-2. CONCLUSIONS: Sex differences in placental TMPRSS2 but not ACE2 were observed in the setting of maternal SARS-CoV-2 infection, which may have implications for offspring vulnerability to placental infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/diagnóstico , Sangue Fetal/imunologia , Placenta/metabolismo , SARS-CoV-2/imunologia , Serina Endopeptidases/metabolismo , Fatores Sexuais , Adulto , COVID-19/sangue , Feminino , Sangue Fetal/virologia , Feto/virologia , Expressão Gênica , Humanos , Transmissão Vertical de Doenças Infecciosas , Masculino , Gravidez , Complicações Infecciosas na Gravidez/virologia
15.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155118

RESUMO

Anti-Müllerian hormone (AMH), or Müllerian-inhibiting substance, is a protein hormone that promotes Müllerian duct regression during male fetal sexual differentiation and regulation of folliculogenesis in women. AMH is a member of the transforming growth factor beta (TGF-ß) family, which has evolved to signal through its own dedicated type II receptor, AMH receptor type II (AMHR2). Structures of other TGF-ß family members have revealed how ligands infer specificity for their cognate receptors; however, it is unknown how AMH binds AMHR2 at the molecular level. Therefore, in this study, we solved the X-ray crystal structure of AMH bound to the extracellular domain of AMHR2 to a resolution of 2.6Å. The structure reveals that while AMH binds AMHR2 in a similar location to Activin and BMP ligand binding to their type II receptors, differences in both AMH and AMHR2 account for a highly specific interaction. Furthermore, using an AMH responsive cell-based luciferase assay, we show that a conformation in finger 1 of AMHR2 and a salt bridge formed by K534 on AMH and D81/E84 of AMHR2 are key to the AMH/AMHR2 interaction. Overall, our study highlights how AMH engages AMHR2 using a modified paradigm of receptor binding facilitated by modifications to the three-finger toxin fold of AMHR2. Furthermore, understanding these elements contributing to the specificity of binding will help in the design of agonists or antagonists or the selection of antibody therapies.


Assuntos
Hormônio Antimülleriano/química , Hormônio Antimülleriano/metabolismo , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Ativinas/química , Sequência de Aminoácidos , Proteínas Morfogenéticas Ósseas/química , Cristalografia por Raios X , Modelos Moleculares , Receptores de Peptídeos/química , Receptores de Fatores de Crescimento Transformadores beta/química , Homologia Estrutural de Proteína
16.
Int J Oncol ; 59(1)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34013359

RESUMO

Anti­Müllerian hormone (AMH) type II receptor (AMHRII) and the AMH/AMHRII signaling pathway are potential therapeutic targets in ovarian carcinoma. Conversely, the role of the three AMH type I receptors (AMHRIs), namely activin receptor­like kinase (ALK)2, ALK3 and ALK6, in ovarian cancer remains to be clarified. To determine the respective roles of these three AMHRIs, the present study used four ovarian cancer cell lines (COV434­AMHRII, SKOV3­AMHRII, OVCAR8, KGN) and primary cells isolated from tumor ascites from patients with ovarian cancer. The results demonstrated that ALK2 and ALK3 may be the two main AMHRIs involved in AMH signaling at physiological endogenous and supraphysiological exogenous AMH concentrations, respectively. Supraphysiological AMH concentrations (25 nM recombinant AMH) were associated with apoptosis in all four cell lines and decreased clonogenic survival in COV434­AMHRII and SKOV3­AMHRII cells. These biological effects were induced via ALK3 recruitment by AMHRII, as ALK3­AMHRII dimerization was favored at increasing AMH concentrations. By contrast, ALK2 was associated with AMHRII at physiological endogenous concentrations of AMH (10 pM). Based on these results, tetravalent IgG1­like bispecific antibodies (BsAbs) against AMHRII and ALK2, and against AMHRII and ALK3 were designed and evaluated. In vivo, COV434­AMHRII tumor cell xenograft growth was significantly reduced in all BsAb­treated groups compared with that in the vehicle group (P=0.018 for BsAb 12G4­3D7; P=0.001 for all other BsAbs). However, the growth of COV434­AMHRII tumor cell xenografts was slower in mice treated with the anti­AMRII­ALK2 BsAb 12G4­2F9 compared with that in animals that received a control BsAb that targeted AMHRII and CD5 (P=0.048). These results provide new insights into type I receptor specificity in AMH signaling pathways and may lead to an innovative therapeutic approach to modulate AMH signaling using anti­AMHRII/anti­AMHRI BsAbs.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Hormônio Antimülleriano/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Receptores de Ativinas Tipo I/imunologia , Animais , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/farmacologia , Anticorpos Biespecíficos/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Fosforilação , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33980714

RESUMO

Müllerian inhibiting substance (MIS/AMH), produced by granulosa cells of growing follicles, is an important regulator of folliculogenesis and follicle development. Treatment with exogenous MIS in mice suppresses follicle development and prevents ovulation. To investigate the mechanisms by which MIS inhibits follicle development, we performed single-cell RNA sequencing of whole neonatal ovaries treated with MIS at birth and analyzed at postnatal day 6, coinciding with the first wave of follicle growth. We identified distinct transcriptional signatures associated with MIS responses in the ovarian cell types. MIS treatment inhibited proliferation in granulosa, surface epithelial, and stromal cell types of the ovary and elicited a unique signature of quiescence in granulosa cells. In addition to decreasing the number of growing preantral follicles, we found that MIS treatment uncoupled the maturation of germ cells and granulosa cells. In conclusion, MIS suppressed neonatal follicle development by inhibiting proliferation, imposing a quiescent cell state, and preventing granulosa cell differentiation.


Assuntos
Hormônio Antimülleriano/farmacologia , Ovário/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Feminino , Inibinas/análise , Camundongos , Camundongos Endogâmicos C57BL , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/fisiologia , Ovário/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Peptídeos/análise , Receptores de Fatores de Crescimento Transformadores beta/análise , Análise de Sequência de RNA , Análise de Célula Única , Transcrição Gênica/efeitos dos fármacos
18.
bioRxiv ; 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33821279

RESUMO

There is a persistent male bias in the prevalence and severity of COVID-19 disease. Underlying mechanisms accounting for this sex difference remain incompletely understood. Interferon responses have been implicated as a modulator of disease in adults, and play a key role in the placental anti-viral response. Moreover, the interferon response has been shown to alter Fc-receptor expression, and therefore may impact placental antibody transfer. Here we examined the intersection of viral-induced placental interferon responses, maternal-fetal antibody transfer, and fetal sex. Placental interferon stimulated genes (ISGs), Fc-receptor expression, and SARS-CoV-2 antibody transfer were interrogated in 68 pregnancies. Sexually dimorphic placental expression of ISGs, interleukin-10, and Fc receptors was observed following maternal SARS-CoV-2 infection, with upregulation in males. Reduced maternal SARS-CoV-2-specific antibody titers and impaired placental antibody transfer were noted in pregnancies with a male fetus. These results demonstrate fetal sex-specific maternal and placental adaptive and innate immune responses to SARS-CoV-2.

19.
Development ; 148(6)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33658225

RESUMO

In mammals, primordial follicles assembled in fetuses or during infancy constitute the oocyte resources for life. Exposure to 17beta-estradiol and phytogenic or endocrine-disrupting chemicals during pregnancy and/or the perinatal period leads to the failure of normal follicle formation. However, the mechanisms underlying estrogen-mediated abnormal follicle formation and physiological follicle formation in the presence of endogenous natural estrogen are not well understood. Here, we reveal that estrogen receptor 1, activated by estrogen, binds to the 5' region of the anti-Mullerian hormone (Amh) gene and upregulates its transcription before follicle formation in cultured mouse fetal ovaries. Ectopic expression of AMH protein was observed in pregranulosa cells of these explants. Furthermore, the addition of AMH to the culture medium inhibited normal follicle formation. Conversely, alpha-fetoprotein (AFP) produced in the fetal liver reportedly blocks estrogen action, although its role in follicle formation is unclear. We further demonstrated that the addition of AFP to the medium inhibited ectopic AMH expression via estrogen, leading to successful follicle formation in vitro Collectively, our in vitro experiments suggest that upon estrogen exposure, the integrity of follicle assembly in vivo is ensured by AFP.


Assuntos
Hormônio Antimülleriano/genética , Receptor alfa de Estrogênio/genética , Folículo Ovariano/crescimento & desenvolvimento , alfa-Fetoproteínas/genética , Animais , Disruptores Endócrinos/toxicidade , Estradiol/farmacologia , Estrogênios/genética , Estrogênios/metabolismo , Feminino , Humanos , Camundongos , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Transcrição Gênica/genética
20.
Res Sq ; 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33758834

RESUMO

During the COVID-19 pandemic, thousands of pregnant women have been infected with SARS-CoV-2. The implications of maternal SARS-CoV-2 infection on fetal and childhood well-being are unknown. We aimed to characterize the fetal immune response to maternal SARS-CoV-2 infection. We performed single-cell RNA sequencing and T-cell receptor (TCR) sequencing on cord blood mononuclear cells (CBMC) from newborns of mothers infected with SARS-CoV-2 in the third-trimester (cases) or without SARS-CoV-2 infection. We identified widespread gene expression changes in CBMC from cases, including upregulation of interferon-stimulated genes and Major Histocompatibility Complex genes in CD14 + monocytes; transcriptional changes suggestive of activation of plasmacytoid dendritic cells, and activation and exhaustion of NK cells and CD8 + T-cells. Lastly, we observed fetal TCR repertoire expansion in cases. As none of the infants were infected with SARS-CoV-2, our results suggest that SARS-CoV-2 maternal infection might modulate the fetal immune system in the absence of vertical transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA